981 resultados para Drug control
Resumo:
Equivalence testing is growing in use in scientific research outside of its traditional role in the drug approval process. Largely due to its ease of use and recommendation from the United States Food and Drug Administration guidance, the most common statistical method for testing (bio)equivalence is the two one-sided tests procedure (TOST). Like classical point-null hypothesis testing, TOST is subject to multiplicity concerns as more comparisons are made. In this manuscript, a condition that bounds the family-wise error rate (FWER) using TOST is given. This condition then leads to a simple solution for controlling the FWER. Specifically, we demonstrate that if all pairwise comparisons of k independent groups are being evaluated for equivalence, then simply scaling the nominal Type I error rate down by (k - 1) is sufficient to maintain the family-wise error rate at the desired value or less. The resulting rule is much less conservative than the equally simple Bonferroni correction. An example of equivalence testing in a non drug-development setting is given.
Resumo:
Site-specific delivery of anticancer agents to tumors represents a promising therapeutic strategy because it increases efficacy and reduces toxicity to normal tissues compared with untargeted drugs. Sterically stabilized immunoliposomes (SIL), guided by antibodies that specifically bind to well internalizing antigens on the tumor cell surface, are effective nanoscale delivery systems capable of accumulating large quantities of anticancer agents at the tumor site. The epithelial cell adhesion molecule (EpCAM) holds major promise as a target for antibody-based cancer therapy due to its abundant expression in many solid tumors and its limited distribution in normal tissues. We generated EpCAM-directed immunoliposomes by covalently coupling the humanized single-chain Fv antibody fragment 4D5MOCB to the surface of sterically stabilized liposomes loaded with the anticancer agent doxorubicin. In vitro, the doxorubicin-loaded immunoliposomes (SIL-Dox) showed efficient cell binding and internalization and were significantly more cytotoxic against EpCAM-positive tumor cells than nontargeted liposomes (SL-Dox). In athymic mice bearing established human tumor xenografts, pharmacokinetic and biodistribution analysis of SIL-Dox revealed long circulation times in the blood with a half-life of 11 h and effective time-dependent tumor localization, resulting in up to 15% injected dose per gram tissue. These favorable pharmacokinetic properties translated into potent antitumor activity, which resulted in significant growth inhibition (compared with control mice), and was more pronounced than that of doxorubicin alone and nontargeted SL-Dox at low, nontoxic doses. Our data show the promise of EpCAM-directed nanovesicular drug delivery for targeted therapy of solid tumors.
Resumo:
BACKGROUND: Stent thrombosis may occur late after drug-eluting stent (DES) implantation, and its cause remains unknown. The present study investigated differences of the stented segment between patients with and without very late stent thrombosis with the use of intravascular ultrasound. METHODS AND RESULTS: Since January 2004, patients presenting with very late stent thrombosis (> 1 year) after DES implantation underwent intravascular ultrasound. Findings in patients with very late stent thrombosis were compared with intravascular ultrasound routinely obtained 8 months after DES implantation in 144 control patients, who did not experience stent thrombosis for > or = 2 years. Very late stent thrombosis was encountered in 13 patients at a mean of 630+/-166 days after DES implantation. Compared with DES controls, patients with very late stent thrombosis had longer lesions (23.9+/-16.0 versus 13.3+/-7.9 mm; P<0.001) and stents (34.6+/-22.4 versus 18.6+/-9.5 mm; P<0.001), more stents per lesion (1.6+/-0.9 versus 1.1+/-0.4; P<0.001), and stent overlap (39% versus 8%; P<0.001). Vessel cross-sectional area was similar for the reference segment (cross-sectional area of the external elastic membrane: 18.9+/-6.9 versus 20.4+/-7.2 mm2; P=0.46) but significantly larger for the in-stent segment (28.6+/-11.9 versus 20.1+/-6.7 mm2; P=0.03) in very late stent thrombosis patients compared with DES controls. Incomplete stent apposition was more frequent (77% versus 12%; P<0.001) and maximal incomplete stent apposition area was larger (8.3+/-7.5 versus 4.0+/-3.8 mm2; P=0.03) in patients with very late stent thrombosis compared with controls. CONCLUSIONS: Incomplete stent apposition is highly prevalent in patients with very late stent thrombosis after DES implantation, suggesting a role in the pathogenesis of this adverse event.
Resumo:
The aim of this study was to search for differences in the EEG of first-episode, drug-naive patients having a schizophrenic syndrome which presented different time courses in response to antipsychotic treatment. Thirteen patients who fulfilled DSM-IV diagnosis for schizophrenia or schizophreniform disorder participated in this study. Before beginning antipsychotic treatment, the EEG was recorded. On the same day psychopathological ratings were assessed using the ADMDP system, and again after 7 and 28 days of treatment. The resting EEG (19 leads) was subject to spectral analysis involving power values for six frequency bands. The score for the schizophrenic syndrome was used to divide the patients into two groups: those who displayed a clinically meaningful improvement of this syndrome (reduction of more than 30%) after 7 days of treatment (early responders, ER) and those who showed this improvement after 28 days (late responders. LR). Analysis of variance for repeated measures between ER, LR and their matched controls with the 19 EEG leads yielded highly significant differences for the factor group in the alpha2 and beta2 frequency band. No difference was found between the slow-wave frequency bands. Compared to controls the LR group showed significantly higher alpha2 and beta2 power and, in comparison to the ER group, significantly higher alpha2 power. There were no significant differences between the ER and the control group. These findings point to differences in brain physiology between ER and LR. The implications for diagnosis and treatment are discussed.
Resumo:
A variety of chronic kidney diseases tend to progress towards end-stage kidney disease. Progression is largely due to factors unrelated to the initial disease, including systemic hypertension and proteinuria. Drugs that block the renin-angiotensin II-aldosterone system, either ACE inhibitors or angiotensin II receptor antagonists, reduce both BP and proteinuria and appear superior to a more conventional antihypertensive treatment regimen in preventing progression to end-stage kidney disease. The most recent recommendations state that the BP goal in children with chronic kidney disease is the corresponding 90th centile for body height, age, and gender.Since satisfactory BP control is often not achieved, the mnemonic acronym DELTAREPROSI was generated to recall the following tips for the practical management of hypertension and proteinuria in childhood chronic renal parenchymal disease: DEfinition of hypertension and Low blood pressure TArget in REnal disease (90th centile calculated by means of simple formulas), potential of drugs inhibiting the REnin-angiotensin II-aldosterone system in hypertension and PROteinuria, advantages of SImplified treatment regimens and escalating the doses every SIx weeks.
Resumo:
Optimal therapy of diabetes has to be based on the known pathophysiology of metabolic disturbances and should eventually alleviate reduced secretion of insulin as well as reduce the usually present resistance to insulin in order to normalize the average blood glucose levels. In less than 30% of patients with type-II diabetes, dietetic measures combined with increased physical activity alone, are sufficient for metabolic control, thus increasing the importance of pharmacologic treatment immensely. Biguanides are the therapeutic choice in patients with massive overweight, because they usually do not induce weight gain; however, specific contraindications (renal failure in particular) have to be taken into consideration. The effect of blood glucose lowering by biguanides is not due to increased secretion of insulin, thus neither hypoglycemias nor hyperinsulinism are induced or increased, respectively. Patients with normal or slightly increased body weight should profit best from sulfonylureas that stimulate insulin production. Combinations of sulfonylurea and biguanides or of insulin and oral antidiabetics or insulin alone have to be taken into account when monotherapy with oral antidiabetics is too inefficient; however, clear and generally accepted guidelines for correct indications of these therapeutic modalities are lacking. Particularly in long-lasting diabetes and for patients with distinct overweight an adequate therapeutic success is often not obtained with the currently available therapeutic means. Possibly, future developments will provide new therapeutic ways with drugs that increase insulin sensitivity or reduce gluconeogenesis.
Resumo:
Drug-induced respiratory depression is a common side effect of the agents used in anesthesia practice to provide analgesia and sedation. Depression of the ventilatory drive in the spontaneously breathing patient can lead to severe cardiorespiratory events and it is considered a primary cause of morbidity. Reliable predictions of respiratory inhibition in the clinical setting would therefore provide a valuable means to improve the safety of drug delivery. Although multiple studies investigated the regulation of breathing in man both in the presence and absence of ventilatory depressant drugs, a unified description of respiratory pharmacodynamics is not available. This study proposes a mathematical model of human metabolism and cardiorespiratory regulation integrating several isolated physiological and pharmacological aspects of acute drug-induced ventilatory depression into a single theoretical framework. The description of respiratory regulation has a parsimonious yet comprehensive structure with substantial predictive capability. Simulations relative to the synergistic interaction of the hypercarbic and hypoxic respiratory drive and the global effect of drugs on the control of breathing are in good agreement with published experimental data. Besides providing clinically relevant predictions of respiratory depression, the model can also serve as a test bed to investigate issues of drug tolerability and dose finding/control under non-steady-state conditions.
Resumo:
AIMS: To determine the effect of anti-ischaemic drug therapy on long-term outcomes of asymptomatic patients without coronary artery disease (CAD) history but silent exercise ST-depression. METHODS AND RESULTS: In a randomized multicentre trial, 263 of 522 asymptomatic subjects without CAD but at least one CAD risk factor in whom silent ischaemia by exercise ECG was confirmed by stress imaging were asked to participate. The 54 (21%) consenting patients were randomized to anti-anginal drug therapy in addition to risk factor control (MED, n = 26) or risk factor control-only (RFC, n = 28). They were followed yearly for 11.2 +/- 2.2 years. During 483 patient-years, cardiac death, non-fatal myocardial infarction, or acute coronary syndrome requiring hospitalization or revascularization occurred in 3 (12%) of MED vs. 17 (61%) of RFC patients (P < 0.001). In addition, MED patients had consistently lower rates of exercise-induced ischaemia during follow-up, and left ventricular ejection fraction remained unchanged (-0.7%, P = 0.597) in contrast to RFC patients in whom it decreased over time (-6.0%, P = 0.006). CONCLUSION: Anti-ischaemic drug therapy and aspirin seem to reduce cardiac events in subjects with asymptomatic ischaemia type I. In such patients, exercise-induced ST-segment depression should be verified by stress imaging; if silent ischaemia is documented, anti-ischaemic drug therapy and aspirin should be considered.
Resumo:
AIMS: Diabetes mellitus (DM) plays an important role in the development of coronary artery disease. Although previous studies have associated drug-eluting stent (DES) implantation in diabetic patients with favourable clinical and angiographic outcomes, the very long-term efficacy of these devices in diabetic patients undergoing PCI for significant unprotected left main coronary artery (ULMCA) disease has not been established yet. METHODS AND RESULTS: Consecutive diabetic patients (n=100), who underwent elective PCI with DES for de novo lesions in an ULMCA between April 2002 and April 2004 in seven tertiary health care centres, were identified retrospectively and analysed. Consecutive non-diabetic patients (n=193), who underwent elective DES implantation for unprotected ULMCA disease, were selected as a control group. All patients were followed for at least 36 months. At 3-years follow-up, freedom from cardiac death ; myocardial infarction (CDMI), target lesion revascularisation (TLR) and target vessel revascularisation (TVR) did not differ significantly between groups. The adjusted freedom from major adverse cardiac events (MACE, defined as the occurrence of CD, MI or TVR) was 63.4% in the DM group and 77.6% in the controls (p<0.001). When divided into IDDM and NIDDM sub-groups, insulin-dependent DM (IDDM) but not non IDDM (NIDDM) patients had significantly lower freedom from CDMI, TLR, TVR and MACE compared to controls. CONCLUSIONS: These results suggest that major improvements in DES technology and pharmacotherapy are still required to improve clinical outcome and that the decision to perform percutaneous revascularisation in this subset of patients should be taken cautiously and on a case by case basis.
Resumo:
The human aurora family of serine-threonine kinases comprises three members, which act in concert with many other proteins to control chromosome assembly and segregation during mitosis. Aurora dysfunction can cause aneuploidy, mitotic arrest, and cell death. Aurora kinases are strongly expressed in a broad range of cancer types. Aurora A expression in tumors is often associated with gene amplification, genetic instability, poor histologic differentiation, and poor prognosis. Aurora B is frequently expressed at high levels in a variety of tumors, often coincidently with aurora A, and expression level has also been associated with increased genetic instability and clinical outcome. Further, aurora kinase gene polymorphisms are associated with increased risk or early onset of cancer. The expression of aurora C in cancer is less well studied. In recent years, several small-molecule aurora kinase inhibitors have been developed that exhibit preclinical activity against a wide range of solid tumors. Preliminary clinical data from phase I trials have largely been consistent with cytostatic effects, with disease stabilization as the best response achieved in solid tumors. Objective responses have been noted in leukemia patients, although this might conceivably be due to inhibition of the Abl kinase. Current challenges include the optimization of drug administration, the identification of potential biomarkers of tumor sensitivity, and combination studies with cytotoxic drugs. Here, we summarize the most recent preclinical and clinical data and discuss new directions in the development of aurora kinase inhibitors as antineoplastic agents.
Resumo:
The ability of anesthetic agents to provide adequate analgesia and sedation is limited by the ventilatory depression associated with overdosing in spontaneously breathing patients. Therefore, quantitation of drug induced ventilatory depression is a pharmacokinetic-pharmacodynamic problem relevant to the practice of anesthesia. Although several studies describe the effect of respiratory depressant drugs on isolated endpoints, an integrated description of drug induced respiratory depression with parameters identifiable from clinically available data is not available. This study proposes a physiological model of CO2 disposition, ventilatory regulation, and the effects of anesthetic agents on the control of breathing. The predictive performance of the model is evaluated through simulations aimed at reproducing experimental observations of drug induced hypercarbia and hypoventilation associated with intravenous administration of a fast-onset, highly potent anesthetic mu agonist (including previously unpublished experimental data determined after administration of 1 mg alfentanil bolus). The proposed model structure has substantial descriptive capability and can provide clinically relevant predictions of respiratory inhibition in the non-steady-state to enhance safety of drug delivery in the anesthetic practice.
Resumo:
Before entering the central nervous system (CNS) immune cells have to penetrate any one of its barriers, namely either the endothelial blood-brain barrier, the epithelial blood-cerebrospinal fluid barrier or the tanycytic barrier around the circumventricular organs, all of which maintain homeostasis within the CNS. The presence of these barriers in combination with the lack of lymphatic vessels and the absence of classical MHC-positive antigen presenting cells characterizes the CNS as an immunologically privileged site. In multiple sclerosis a large number of inflammatory cells gains access to the CNS parenchyma. Studies performed in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis, have enabled us to understand some of the molecular mechanisms involved in immune cell entry into the CNS. In particular, the realization that /alpha4-integrins play a predominant role in leukocyte trafficking to the CNS has led to the development of a novel drug for the treatment of relapsing-remitting multiple sclerosis, which targets /alpha4-integrin mediated immune cell migration to the CNS. At the same time, the involvement of other adhesion and signalling molecules in this process remains to be investigated and novel molecules contributing to immune cell entry into the CNS are still being identified. The entire process of immune cell trafficking into the CNS is strictly controlled by the brain barriers not only under physiological conditions but also during neuroinflammation, when some barrier properties are lost. Thus, immune cell entry into the CNS critically depends on the unique characteristics of the brain barriers maintaining CNS homeostasis.
Resumo:
In patients with drug-resistant hypertension, chronic electric stimulation of the carotid baroreflex is an investigational therapy for blood pressure reduction. We hypothesized that changes in cardiac autonomic regulation can be demonstrated in response to chronic baroreceptor stimulation, and we analyzed the correlation with blood pressure changes. Twenty-one patients with drug-resistant hypertension were prospectively included in a substudy of the Device Based Therapy in Hypertension Trial. Heart rate variability and heart rate turbulence were analyzed using 24-hour ECG. Recordings were obtained 1 month after device implantation with the stimulator off and after 3 months of chronic electric stimulation (stimulator on). Chronic baroreceptor stimulation decreased office blood pressure from 185+/-31/109+/-24 mm Hg to 154+/-23/95+/-16 mm Hg (P<0.0001/P=0.002). Mean heart rate decreased from 81+/-11 to 76+/-10 beats per minute(-1) (P=0.001). Heart rate variability frequency-domain parameters assessed using fast Fourier transformation (FFT; ratio of low frequency:high frequency: 2.78 versus 2.24 for off versus on; P<0.001) were significantly changed during stimulation of the carotid baroreceptor, and heart rate turbulence onset was significantly decreased (turbulence onset: -0.002 versus -0.015 for off versus on; P=0.004). In conclusion, chronic baroreceptor stimulation causes sustained changes in heart rate variability and heart rate turbulence that are consistent with inhibition of sympathetic activity and increase of parasympathetic activity in patients with drug-resistant systemic hypertension; these changes correlate with blood pressure reduction. Whether the autonomic modulation has favorable cardiovascular effects beyond blood pressure control should be investigated in further studies.
Resumo:
OBJECTIVES: In order to create a suitable model for high-throughput drug screening, a Giardia lamblia WB C6 strain expressing Escherichia coli glucuronidase A (GusA) was created and tested with respect to susceptibility to the anti-giardial drugs nitazoxanide and metronidazole. METHODS: GusA, a well-established reporter gene in other systems, was cloned into the vector pPacVInteg allowing stable expression in G. lamblia under control of the promoter from the glutamate dehydrogenase (gdh) gene. The resulting transgenic strain was compared with the wild-type strain in a vitality assay, characterized with respect to susceptibility to nitazoxanide, metronidazole and -- as assessed in a 96-well plate format -- to a panel of 15 other compounds to be tested for anti-giardial activity. RESULTS: GusA was stably expressed in G. lamblia. Using a simple glucuronidase assay protocol, drug efficacy tests yielded results similar to those from cell counting. CONCLUSIONS: G. lamblia WB C6 GusA is a suitable tool for high-throughput anti-giardial drug screening.
Resumo:
OBJECTIVE: The objective of the study is to compare the clinical, microbiological and host-derived effects in the non-surgical treatment of initial peri-implantitis with either adjunctive local drug delivery (LDD) or adjunctive photodynamic therapy (PDT) after 12 months. MATERIALS AND METHODS: Forty subjects with initial peri-implantitis, that is, pocket probing depths (PPD) 4-6 mm with bleeding on probing (BoP) and radiographic bone loss ≤2 mm, were randomly assigned to two treatment groups. All implants were mechanically debrided with titanium curettes and with a glycine-based powder airpolishing system. Implants in the test group (N = 20) received adjunctive PDT, whereas minocycline microspheres were locally delivered into the peri-implant pockets of control implants (N = 20). At sites with residual BoP, treatment was repeated after 3, 6, 9 and 12 months. The primary outcome variable was the change in the number of peri-implant sites with BoP. Secondary outcome variables included changes in PPD, clinical attachment level (CAL), mucosal recession (REC) and in bacterial counts and crevicular fluid (CF) levels of host-derived biomarkers. RESULTS: After 12 months, the number of BoP-positive sites decreased statistically significantly (P < 0.05) from baseline in both groups (PDT: 4.03 ± 1.66-1.74 ± 1.37, LDD: 4.41 ± 1.47-1.55 ± 1.26). A statistically significant (P < 0.05) decrease in PPD from baseline was observed at PDT-treated sites up to 9 months (4.19 ± 0.55 mm to 3.89 ± 0.68 mm) and up to 12 months at LDD-treated sites (4.39 ± 0.77 mm to 3.83 ± 0.85 mm). Counts of Porphyromonas gingivalis and Tannerella forsythia decreased statistically significantly (P < 0.05) from baseline to 6 months in the PDT and to 12 months in the LDD group, respectively. CF levels of IL-1β decreased statistically significantly (P < 0.05) from baseline to 12 months in both groups. No statistically significant differences (P > 0.05) were observed between groups after 12 months with respect to clinical, microbiological and host-derived parameters. CONCLUSIONS: Non-surgical mechanical debridement with adjunctive PDT was equally effective in the reduction of mucosal inflammation as with adjunctive delivery of minocycline microspheres up to 12 months. Adjunctive PDT may represent an alternative approach to LDD in the non-surgical treatment of initial peri-implantitis.