964 resultados para Drag (Aerodynamics)
Resumo:
A novel supersonic wind tunnel setup is proposed to enable the investigation of control on a normal shock wave. Previous experimental arrangements were found to suffer from shock instability. Wind tunnel tests with and without control have confirmed the capability of the new setup to stabilise a shock structure at a target position without changing the nature of the shock wave / boundary layer interaction flow at M∞ = 1.3 and M ∞ = 1.5. Flow visualisation and pressure measurements with the new setup have revealed detailed characteristics of shock wave / boundary layer interactions and a λ-shock structure as well as benefits of control in total drag reduction in the presence of 3D bump control.
Resumo:
Supersonic engine intakes operating supercritically feature shock wave / boundary layer interactions (SBLIs), which are conventionally controlled using boundary layer bleed. The momentum loss of bleed flow causes high drag, compromising intake performance. Micro-ramp sub-boundary layer vortex generators (SBVGs) have been proposed as an alternative form of flow control for oblique SBLIs in order to reduce the bleed requirement. Experiments have been conducted at Mach 2.5 to characterise the flow details on such devices and investigate their ability to control the interaction between an oblique shock wave and the naturally grown turbulent boundary layer on the tunnel floor. Micro-ramps of four sizes with heights ranging from 25% to 75% of the uncontrolled boundary layer thickness were tested. The flow over all sizes of microramp was found to be similar, featuring streamwise counter-rotating vortices which entrain high momentum fluid, locally reducing the boundary layer displacement thickness. When installed ahead of the shock interaction it was found that the positioning of the micro-ramps is of limited importance. Micro-ramps did not eliminate flow separation. However, the previously two-dimensional separation was broken up into periodic three-dimensional separation zones. The interaction length was reduced and the pressure gradient across the interaction was increased.
Resumo:
The dynamic analysis of a deepwater floating platform and the associated mooring/riser system should ideally be fully coupled to ensure a reliable response prediction. It is generally held that a time domain analysis is the only means of capturing the various coupling and nonlinear effects accurately. However, in recent work it has been found that for an ultra-deepwater floating system (2000m water depth), the highly efficient frequency domain approach can provide highly accurate response predictions. One reason for this is the accuracy of the drag linearization procedure over both first and second order motions, another reason is the minimal geometric nonlinearity displayed by the mooring lines in deepwater. In this paper, the aim is to develop an efficient analysis method for intermediate water depths, where both mooring/vessel coupling and geometric nonlinearity are of importance. It is found that the standard frequency domain approach is not so accurate for this case and two alternative methods are investigated. In the first, an enhanced frequency domain approach is adopted, in which line nonlinearities are linearized in a systematic way. In the second, a hybrid approach is adopted in which the low frequency motion is solved in the time domain while the high frequency motion is solved in the frequency domain; the two analyses are coupled by the fact that (i) the low frequency motion affects the mooring line geometry for the high frequency motion, and (ii) the high frequency motion affects the drag forces which damp the low frequency motion. The accuracy and efficiency of each of the methods are systematically compared. Copyright © 2007 by ASME.
Resumo:
The use of a superconducting magnetic bearing in an Urenco Power Technologies (UPT) 100kW flywheel is being studied. The dynamics of a conventional flywheel energy storage system have been studied at low frequencies. We show that the main design consideration is overcoming drag friction losses and parasitic resonances. We propose an original superconducting magnetic bearing design and improved cryogenic motor cooling to increase stability and decrease energy losses in the system. © 2008 IOP Publishing Ltd.
Resumo:
A mathematical model is developed to predict the energy consumption of a heavy vehicle. It includes the important factors of heavy-vehicle energy consumption, namely engine and drivetrain performances, losses due to accessories, aerodynamic drag, rolling resistance, road gradients, and driver behaviour. Novel low-cost testing methods were developed to determine engine and drivetrain characteristics. A simple drive cycle was used to validate the model. The model is able to predict the fuel use for a 371 tractor-semitrailer vehicle over a 4 km drive cycle within 1 per cent. This paper demonstrates that accurate and reliable vehicle benchmarking and model parameter measurement can be achieved without expensive equipment overheads, e.g. engine and chassis dynamometers.
Resumo:
In this work, speed of sound in 2 phase mixture has been explored using CFD-DEM (Computational Fluid Dynamcis - Discrete Element Modelling). In this method volume averaged Navier Stokes, continuity and energy equations are solved for fluid. Particles are simulated as individual entities; their behaviour is captured by Newton's laws of motion and classical contact mechanics. Particle-fluid interaction is captured using drag laws given in literature.The speed of sound in a medium depends on physical properties. It has been found experimentally that speed of sound drops significantly in 2 phase mixture of fluidised particles because of its increased density relative to gas while maintaining its compressibility. Due to the high rate of heat transfer within 2 phase medium as given in Roy et al. (1990), it has been assumed that the fluidised gas-particle medium is isothermal.The similar phenomenon has been tried to be captured using CFD-DEM numerical simulation. The disturbance is introduced and fundamental frequency in the medium is noted to measure the speed of sound for e.g. organ pipe. It has been found that speed of sound is in agreement with the relationship given in Roy et al. (1990). Their assumption that the system is isothermal also appears to be valid.
Resumo:
Over recent years academia and industry have engaged with the challenge of model testing deepwater structures at conventional scales. One approach to the limited depth problem has been to truncate the lines. This concept will be introduced, highlighting the need to better understand line dynamic processes. The type of line truncation developed here models the upper sections of each line in detail, capturing wave action and all coupling effects with the vessel, terminating to an approximate analytical model that aims to simulate the remainder of the line. A rationale for this is that in deep water transverse elastic waves of a line are likely to decay before they are reflected at the seabed because of nonlinear hydrodynamic drag forces. The first part of this paper is centered on verification of this rationale. A simplified model of a mooring line that describes the transverse dynamics in wave frequency is used, adopting the equation of motion of an inextensible taut string. The line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a universal curve for the decay of transverse vibrations along the line, which is suitable for any kind of line with any top motion. This has a significant engineering benefit, allowing for a rapid assessment of line dynamics - it can be useful in deciding whether a truncated line model is appropriate, and if so, at which point truncation might be applied. This is followed by developing a truncation mechanism, formulating an end approximation that can reproduce the correct impedance, had the line been continuous to full depth. It has been found that below a certain length criterion, which is also universal, the transverse vibrational characteristics for each line are inertia driven. As such the truncated model can assume a linear damper whose coefficient depends on the line properties and frequency of vibration. Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
Prior to stocking economic species in tanks and nursery ponds, all the unwanted and predatory fishes in them will have to be removed. Even though most of them can be caught with ordinary gear such as cast net, drag net, scoop net etc. Total or absolute eradication is not possible and those left over are sufficient to destroy all the fingerlings introduced. Development of an electrical method for killing predatory fishes at reasonable cost is therefore, expected to provide a solution. This paper deals with a few methods, based on the use of electricity and which are suitable for different ponds.
Resumo:
Engineering developments, problems of marine corrosion, fouling and practical innovative applications of copper-nickel alloys in comparison with other materials for marine aquacultural engineering are presented. Coefficient of drag and hydrodynamic force acting on nylon and polyethylene net enclosures have shown a four-fold increase of force in four months at the Cochin harbour due to fouling. Corrosion behaviour of copper-nickel and other copper base alloys are also presented. Effects of copper additions to culture water are reviewed.
Resumo:
The failure of piled foundations has been observed in many earthquake events. The manner in which a pile is able to support its applied superstructure loading during an earthquake is not yet fully understood, particularly with respect to the shaft friction capacity. In this paper, new pile group is presented which has been instrumented to measure the shaft friction distribution along the length of a pile. In addition, this pile group is able to measure the pore pressures directly beneath the pile tips. The pile group was tested in dynamic centrifuge experiments and showed differing shaft friction behaviour in dense and loose soil layers as well as strong dilation beneath the pile tips at the start of earthquake loading. A reduction in shaft friction was observed after the earthquake due to soil down-drag. © 2010 Taylor & Francis Group, London.
Resumo:
This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.
Resumo:
This paper is aimed at enabling the confident use of existing model test facilities for ultra deepwater application without having to compromise on the widely accepted range of scales currently used by the floating production industry. Passive line truncation has traditionally been the preferred method of creating an equivalent numerical model at reduced depth; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. The upper sections of each line are modeled in detail, capturing the wave action zone and all coupling effects with the vessel. These terminate to an approximate analytical model that aims to simulate the remainder of the line. Stages 1 & 2 are used to derive a water depth truncation ratio. Here vibration decay of transverse elastic waves is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Stage 3 endeavors to match the individual line stiffness between the full depth and truncated models. In deepwater it is likely that taut polyester moorings will be used which are predominantly straight and have high axial stiffness that provides the principal restoring force to static and low frequency vessel motions. Consequently, it means that the natural frequencies of axial vibrations are above the typical wave frequency range allowing for a quasi-static solution. In cases of exceptionally large wave frequency vessel motions, localized curvature at the chain seabed segment and tangential skin drag on the polyester rope can increase dynamic peak tensions considerably. The focus of this paper is to develop an efficient scheme based on analytic formulation, for replicating these forces at the truncation. The paper will close with an example case study of a single mooring under extreme conditions that replicates exactly the static and dynamic characteristics of the full depth line. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
Previous numerical simulations have shown that vortex breakdown starts with the formation of a steady axisymmetric bubble and that an unsteady spiralling mode then develops on top of this.We study how this spiral mode of vortex breakdown might be suppressed or promoted. We use a Lagrangian approach to identify regions of the flow which are sensitive to small open-loop steady and unsteady (harmonic) forces. We find these regions to be upstream of the vortex breakdown bubble. We investigate passive control using a small axisymmetric control ring. In this case, the steady and unsteady control forces are caused by the drag force on the control ring. We find a narrow region upstream of the bubble where the control ring will stabilise the flow and we verify this using numerical simulations. © 2012 IEEE.
Resumo:
Robustness enhancement for Shock Control Bumps (SCBs) on transonic wings is an ongoing topic because most designs provide drag savings only in a relatively small band of the airfoil polar. In this paper, different bump shapes are examined with CFD methods which are validated first by comparison with wind tunnel results. An evaluation method is introduced allowing the robustness assessment of a certain design with little computational effort. Shape optimizations are performed to trim SCB designs to maximum performance on the one hand and maximum robustness on the other hand. The results are analysed and different and parameters influencing the robustness are suggested. Copyright © 2012 by Klemens Nuebler.
Resumo:
This paper presents the development and the application of a multi-objective optimization framework for the design of two-dimensional multi-element high-lift airfoils. An innovative and efficient optimization algorithm, namely Multi-Objective Tabu Search (MOTS), has been selected as core of the framework. The flow-field around the multi-element configuration is simulated using the commercial computational fluid dynamics (cfd) suite Ansys cfx. Elements shape and deployment settings have been considered as design variables in the optimization of the Garteur A310 airfoil, as presented here. A validation and verification process of the cfd simulation for the Garteur airfoil is performed using available wind tunnel data. Two design examples are presented in this study: a single-point optimization aiming at concurrently increasing the lift and drag performance of the test case at a fixed angle of attack and a multi-point optimization. The latter aims at introducing operational robustness and off-design performance into the design process. Finally, the performance of the MOTS algorithm is assessed by comparison with the leading NSGA-II (Non-dominated Sorting Genetic Algorithm) optimization strategy. An equivalent framework developed by the authors within the industrial sponsor environment is used for the comparison. To eliminate cfd solver dependencies three optimum solutions from the Pareto optimal set have been cross-validated. As a result of this study MOTS has been demonstrated to be an efficient and effective algorithm for aerodynamic optimizations. Copyright © 2012 Tech Science Press.