489 resultados para Dislocations.
Resumo:
C—H stretching bands, νCH, in the infrared spectrum of single crystals of nominally high purity, of laboratory-grown MgO, and of natural upper mantle olivine, provide an “organic” signature that closely resembles the symmetrical and asymmetrical C—H stretching modes of aliphatic —CH2 units. The νCH bands indicate that H2O and CO2, dissolved in the matrix of these minerals, converted to form H2 and chemically reduced C, which in turn formed C—H entities, probably through segregation into defects such as dislocations. Heating causes the C—H bonds to pyrolyze and the νCH bands to disappear, but annealing at 70°C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to Cx chains, x = 4, with the terminal C atoms anchored to the MgO matrix by bonding to two O−. Allowing H2 to react with such Cx chains leads to [O2C(CH2)2CO2] or similar precipitates. It is suggested that such Cx—Hy—Oz entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus, it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks, the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of life.
Resumo:
Two sealed borehole hydrologic observatories (CORKs) were installed in two active hydrogeochemical systems at the Costa Rica subduction zone to investigate the relationship between tectonics, fluid flow, and fluid composition. The observatories were deployed during Ocean Drilling Program (ODP) Leg 205 at Site 1253, ~ 0.2 km seaward of the trench, in the upper igneous basement, and at Site 1255, ~ 0.5 km landward of the trench, in the décollement. Downhole instrumentation was designed to monitor formation fluid flow rates, composition, pressure, and temperature. The two-year records collected by this interdisciplinary effort constitute the first co-registered hydrological, chemical, and physical dataset from a subduction zone, providing critical information on the average and transient state of the subduction thrust and upper igneous basement. The continuous records at ODP Site 1253 show that the uppermost igneous basement is highly permeable hosting an average fluid flow rate of 0.3 m/yr, and indicate that the fluid sampled in the basement is a mixture between seawater (~ 50%) and a subduction zone fluid originating within the forearc (~ 50%). These results suggest that the uppermost basement serves as an efficient pathway for fluid expelled from the forearc that should be considered in models of subduction zone hydrogeology and deformation. Three transients in fluid flow rates were observed along the décollement at ODP Site 1255, two of which coincided with stepwise increases in formation pressure. These two transients are the result of aseismic slip dislocations that propagated up-dip from the seismogenic zone over the course of ~ 2 weeks terminating before reaching ODP Site 1255 and the trench. The nature and temporal behavior of strain and the associated hydrological response during these slow slip events may be an analog for the response of the seaward part of the subduction prism during or soon after large subduction zone earthquakes.
Resumo:
"The first six volumes of this work recorded the progress of Surgery down to 1913. Then came the Great War ... Hence, immediately after the Armistice ... I began to assemble a full staff of experts, whose work appears in Volumes VII and VIII."--Preface, v.7, 1921.
Resumo:
Contiene con portada y paginacion propias : Traitant de la goutte, maladie venerienne, peste, petite verole, & rougeole, des fievres, des tumeurs, playes, ulceres, fractures, dislocations & difformitez exterieures ... par M. Louis Guion ..., sieur de la Nauche ... Augmente du Traite des maladies nouvelles, extraordinaires, spirituelles, & astrales, avec des recherches curieuses; par M. Lazare Meyssonnier ... ; Theorie de la medecine, d'une maniere nouuelle, & tres-intelligible ... par M. Lazare Meyssonnier ...
Resumo:
Published in London in 1771 and 1808.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: leaves [99]-[100]
Resumo:
The tensile deformation behavior of a range of supersaturated Mg-Al solid solutions and an as-cast magnesium alloy AM60 has been studied. The Mg-Al alloys were tested at room temperature while the alloy AM60 was tested in the temperature range 293-573 K. The differences in the deformation behavior of the alloys is discussed in terms of hardening and softening processes. In order to identify which processes were active, the stress dependence of the strain-hardening coefficient was assessed using Lukac and Balik's model of hardening and softening. The analysis indicates that hardening involves solid solution hardening and interaction with forest dislocations and non-dislocation obstacles such as second phase particles. Cross slip is not a significant recovery process in the temperature range 293-423 K. At temperatures between 473 and 523 K the analysis suggests that softening is controlled by cross slip and climb of dislocations. At temperatures above 523 K softening seems to be controlled by dynamic recrystallisation. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Understanding and explaining emergent constitutive laws in the multi-scale evolution from point defects, dislocations and two-dimensional defects to plate tectonic scales is an arduous challenge in condensed matter physics. The Earth appears to be the only planet known to have developed stable plate tectonics as a means to get rid of its heat. The emergence of plate tectonics out of mantle convection appears to rely intrinsically on the capacity to form extremely weak faults in the top 100 km of the planet. These faults have a memory of at least several hundred millions of years, yet they appear to rely on the effects of water on line defects. This important phenomenon was first discovered in laboratory and dubbed ``hydrolytic weakening''. At the large scale it explains cycles of co-located resurgence of plate generation and consumption (the Wilson cycle), but the exact physics underlying the process itself and the enormous spanning of scales still remains unclear. We present an attempt to use the multi-scale non-equilibrium thermodynamic energy evolution inside the deforming lithosphere to move phenomenological laws to laws derived from basic scaling quantities, develop self-consistent weakening laws at lithospheric scale and give a fully coupled deformation-weakening constitutive framework. At meso- to plate scale we encounter in a stepwise manner three basic domains governed by the diffusion/reaction time scales of grain growth, thermal diffusion and finally water mobility through point defects in the crystalline lattice. The latter process governs the planetary scale and controls the stability of its heat transfer mode.
Resumo:
A number of investigators have studied the application of oscillatory energy to a metal undergoing plastic deformation. Their results have shown that oscillatory stresses reduce both the stress required to initiate plastic deformation and the friction forces between the tool and workpiece. The first two sections in this thesis discuss historically and technically the devolopment of the use of oscillatory energy techniques to aid metal forming with particular reference to wire drawing. The remainder of the thesis discusses the research undertaken to study the effect of applying longitudinal oscillations to wire drawing. Oscillations were supplied from an electric hydraulic vibrator at frequencies in the range 25 to 500 c/s., and drawing tests were performed at drawing speeds up to 50 ft/m. on a 2000 lbf. bull-block. Equipment was designed to measure the drawing force, drawing torque, amplitude of die and drum oscillation and drawing speed. Reasons are given for selecting mild steel, pure and hard aluminium, stainless steel and hard copper as the materials to be drawn, and the experimental procedure and calibration of measuring equipment arc described. Results show that when oscillatory stresses are applied at frequencies within the range investigated : (a) There is no reduction in the maximum drawing load. (b) Using sodium stearate lubricant there is a negligible reduction in the coefficient of friction between the die and wire. (c) Pure aluminium does not absorb sufficient oscillatory energy to ease the movement of dislocations. (d) Hard aluminium is not softened by oscillatory energy accelerating the diffusion process. (e) Hard copper is not cyclically softened. A vibration analysis of the bull-block and wire showed that oscillatory drawiing in this frequency range, is a mechanical process of straining; and unstraining the drawn wire, and is dependent upon the stiffness of the material being drawn and the drawing machine. Directions which further work should take are suggested.
Resumo:
On July 17, 1990, President George Bush ssued “Proclamation #6158" which boldly declared the following ten years would be called the “Decade of the Brain” (Bush, 1990). Accordingly, the research mandates of all US federal biomedical institutions worldwide were redirected towards the study of the brain in general and cognitive neuroscience specifically. In 2008, one of the greatest legacies of this “Decade of the Brain” is the impressive array of techniques that can be used to study cortical activity. We now stand at a juncture where cognitive function can be mapped in the time, space and frequency domains, as and when such activity occurs. These advanced techniques have led to discoveries in many fields of research and clinical science, including psychology and psychiatry. Unfortunately, neuroscientific techniques have yet to be enthusiastically adopted by the social sciences. Market researchers, as specialized social scientists, have an unparalleled opportunity to adopt cognitive neuroscientific techniques and significantly redefine the field and possibly even cause substantial dislocations in business models. Following from this is a significant opportunity for more commercially-oriented researchers to employ such techniques in their own offerings. This report examines the feasibility of these techniques.
Resumo:
The structure of wurtzite and zinc blende InAs-GaAs (001) core-shell nanowires grown by molecular beam epitaxy on GaAs (001) substrates has been investigated by transmission electron microscopy. Heterowires with InAs core radii exceeding 11 nm, strain relax through the generation of misfit dislocations, given a GaAs shell thickness greater than 2.5 nm. Strain relaxation is larger in radial directions than axial, particularly for shell thicknesses greater than 5.0 nm, consistent with molecular statics calculations that predict a large shear stress concentration at each interface corner. © 2012 American Institute of Physics.
Resumo:
This thesis reports a detailed investigation of the micromechanics of agglomerate behaviour under free-fall impact, double (punch) impact and diametrical compression tests using the simulation software TRUBAL. The software is based on the discrete element method (DEM) which incorporates the Newtonian equations of motion and contact mechanics theory to model the interparticle interactions. Four agglomerates have been used: three dense (differing in interface energy and contact density) and one loose. Although the simulated agglomerates are relatively coarse-grained, the results obtained are in good agreement with laboratory test results reported in the literature. The computer simulation results show that, in all three types of test, the loose agglomerate cannot fracture as it is unable to store sufficient elastic energy. Instead, it becomes flattened for low loading-rates and shattered or crushed at higher loading-rates. In impact tests, the dense agglomerates experience only local damage at low impact velocities. Semi-brittle fracture and fragmentation are produced over a range of higher impact velocities and at very high impact velocities shattering occurs. The dense agglomerates fracture in two or three large fragments in the diametrical compression tests. Local damage at the agglomerate-platen interface always occurs prior to fracture and consists of local bond breakage (microcrack formation) and local dislocations (compaction). The fracture process is dynamic and much more complex than that suggested by continuum fracture mechanics theory. Cracks are always initiated from the contact zones and propagate towards the agglomerate centre. Fracture occurs a short time after the start of unloading when a fracture crack "selection" process takes place. The detailed investigation of the agglomerate damage processes includes an examination of the evolution of the fracture surface. Detailed comparisons of the behaviour of the same agglomerate in all three types of test are presented. The particle size distribution curves of the debris are also examined, for both free-fall and double impact tests.
Resumo:
In recent years dual phase steels comprising of 5-20% martensite in a ferrite matrix have come into the limelight of high strength cold formable steels because of their potential for vehicle weight saving. They show the following features: no yield point; relatively low initial flow stress; high initial workhardening rate; well sustained work hardening. As a consequence of these characteristics, dual phase steels exhibit a better combination of strength and elongation than other HSLA steels. In this thesis, a broad view of the factors which influence their properties is presented. Mechanical properties and forming ability of a commercially available dual phase steel and an AL-Si killed steel processed to dual phase form are investigated to ascertain the effect of their microstructure on their properties. It is found that the yield phenomena are masked by the transformation induced stresses present during processing and so yield point could be recovered under suitable ageing treatment; that apart from giving the above properties dual phasing gives rise to very low strain-rate sensitivity and a low R value ~ 1; that the mechanical response under rolling conditions is not different from those under tension; that there is a danger of damage to tooling during forming operations of these steels if fracture should precede instability as a result of grain size dependent strength found for these steels. It is also found that very little deformation of the martensite islands took place during deformation except at high strains. The work-hardening and the strength levels can be controlled by either decreasing the grain size or increasing the martensite volume fraction, but it is found that increasing martensite has a detrimental effect on ductility and the ductility and fracture strength can be controlled better by refining the grain size. A remarkable effect found in the dual phase steel tested is that the compressive strength is higher than the tensile strength. The reason for this observation is not yet clear but it is suggested that it might be due to the introduction of emissary type dislocations into the ferrite lattice as a result of twins formed in the martensite during transformation from austenite. The twins are envisaged to be {111} <112> in character.
Resumo:
Deformation microstructures in two batches of commercially pure copper (A and B) of allnost similar composition have been studied after rolling reductions from 5% to 95%. X- ray diffraction, optical metallography, scanning electron microscopy in the back-scattered mode, transmission and scanning electron microscopy have been used to examine the deformation microstructure. At low strains (~10 %) the deformation is accommodated by uniform octahedral slip. Microbands that occur as sheet like features usually on the {111} slip planes are formed after 10% reduction. The misorientations between rnicrobonds ond the matrix are usually small (1 - 2° ) and the dislocations within the bands suggest that a single slip system has been operative. The number of microbands increases with strain, they start to cluster and rotate after 60% reduction and, after 90 %, they become almost perfectly aligned with the rolling direction. There were no detectable differences in deformation microstructure between the two materials up to a deformation level of 60% but subsequently, copper B started to develop shear bands which became very profuse by 90% reduction. By contrast, copper A at this stage of deformation developed a smooth laminated structure. This difference in the deformation microstructures has been attributed to traces of unknown impurity in D which inhibit recovery of work hardening. The preferred orientations of both were typical of deformed copper although the presence of shear bands was associated wth a slightly weaker texture. The effects of rolling temperature and grain size on deformation microstructure were also investigated. It was concluded that lowering the rolling temperature or increasing the initial grain size encourages the material to develop shear bands after heavy deformation. Recovery and recrystallization have been studied in both materials during annealing. During recrystallization the growth of new grains showed quite different characteristics in the two cases. Where shear bands were present these acted as nucleation sites and produced a wide spread of recrystallized grain orientations. The resulting annealing textures were very weak. In the absence of shear bands, nucleation occurs by a remarkably long range bulging process which creates the cube orientation and an intensely sharp annealing texture. Cube oriented regions occur in long bands of highly elongated and well recovered cells which contain long range cumulative micorientations. They are transition bands with structural characteristics ideally suited for nucleation of recrystallization. Shear banding inhibits the cube texture both by creating alternative nuclei and by destroying the microstructural features necessary for cube nucleation.