958 resultados para Dimethylsulfoxide Reductase
Resumo:
OBJECTIVE: Intimal hyperplasia is a vascular remodelling process that occurs after a vascular injury. The mechanisms involved in intimal hyperplasia are proliferation, dedifferentiation, and migration of medial smooth muscle cells towards the subintimal space. We postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, might participate in the development of intimal hyperplasia. Connexin43 (Cx43) expression levels may be altered in intimal hyperplasia, and we therefore evaluated the regulated expression of Cx43 in human saphenous veins in culture in the presence or not of fluvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. METHODS: Segments of harvested human saphenous veins, obtained at the time of bypass graft, were opened longitudinally with the luminal surface uppermost and maintained in culture for 14 days. Vein fragments were then processed for histologic examination, neointimal thickness measurements, immunocytochemistry, RNA, and proteins analysis. RESULTS: Of the four connexins (Cx37, 40, 43, and 45), we focused on Cx43 and Cx40, which we found by real-time polymerase chain reaction to be expressed in the saphenous vein because they are the predominant connexins expressed by smooth muscle cells and endothelial cells. After 14 days of culture, histomorphometric analysis showed a significant increase in the intimal thickness as observed during the process of intimal hyperplasia. A time-course analysis revealed a progressive upregulation of Cx43 to reach a maximal increase of sixfold to eightfold at both transcript and protein levels after 14 days in culture. In contrast, the expression of Cx40, abundantly expressed in the endothelial cells, was not altered. Immunofluorescence showed a large increase in Cx43 within smooth muscle cell membranes of the media layer. The development of intimal hyperplasia in vitro was decreased in presence of fluvastatin and was associated with reduced Cx43 expression. CONCLUSIONS: These data show that Cx43 is increased in vitro during the process of intimal hyperplasia and that fluvastatin could prevent this induction, supporting a critical role for Cx43-mediated gap-junctional communication in the human vein during the development of intimal hyperplasia. CLINICAL RELEVANCE: Stenosis due to intimal hyperplasia is the most common cause of failure of venous bypass grafts. To better understand the development of intimal hyperplasia, we used an ex vivo organ culture model to study saphenous veins harvested from patients undergoing a lower limb bypass surgery. In this model, the morphologic and functional integrity of the vessel wall is maintained and significant intimal hyperplasia development occurs after 14 days in culture. We have postulated that gap junctions, which coordinate physiologic processes such as cell growth and differentiation, may participate in the development of intimal hyperplasia. Indeed, intimal hyperplasia consists of proliferation and migration of smooth muscle cells into the subendothelial space. Intercellular communication is responsible for the direct transfer of ions and small molecules from one cell to the other through gap-junction channels found at cell-cell appositions. No study to date has evaluated whether gap junctional communication is involved in the process of intimal hyperplasia in humans. This assertion was investigated by using the aforementioned organ culture model of intimal hyperplasia in human saphenous veins, and our data support a critical role for Cx43-mediated gap junctional communication in human vein during the development of intimal hyperplasia.
Resumo:
Seeds of common bean (Phaseolus vulgaris) with high molybdenum (Mo) concentration can supply Mo plant demands, but to date no studies have concomitantly evaluated the effects of Mo-enriched seeds on plants inoculated with rhizobia or treated with N fertilizer. This work evaluated the effects of seed Mo on growth and N acquisition of bean plants fertilized either by symbiotic N or mineral N, by measuring the activities of nitrogenase and nitrate reductase and the contribution of biological N2 fixation at different growth stages. Seeds enriched or not with Mo were sown with two N sources (inoculated with rhizobia or fertilized with N), in pots with 10 kg of soil. In experiment 1, an additional treatment consisted of Mo-enriched seeds with Mo applied to the soil. In experiment 2, the contribution of N2 fixation was estimated by 15N isotope dilution. Common bean plants grown from seeds with high Mo concentration flowered one day earlier. Seeds with high Mo concentration increased the leaf area, shoot mass and N accumulation, with both N sources. The absence of effects of Mo application to the soil indicated that Mo contents of Mo-enriched seeds were sufficient for plant growth. Seeds enriched with Mo increased nitrogenase activity at the vegetative stage of inoculated plants, and nitrate reductase activity at late growth stages with both N sources. The contribution of N2 fixation was 17 and 61 % in plants originating from low- or high-Mo seeds, respectively. The results demonstrate the benefits of sowing Mo-enriched seeds on growth and N nutrition of bean plants inoculated with rhizobia or fertilized with mineral N fertilizer.
Resumo:
In order to explore potential alternatives to the production of polyhydroxyalkanoates (PHAs) in bacteria, the enzymes of Alcaligenes eutrophus involved in the synthesis of polyhydroxybutyrate (PHB) have been expressed in the model plant Arabidopsis thaliana. Following the successful production of low amounts of high molecular weight PHB in plants expressing the acetoacetyl-CoA reductase and the PHB synthase in the cytoplasm of Arabidopsis cell, expression of the PHB pathway in the pastids was achieved by modifying the PHB enzymes with plastid targeting signals. This strategy resulted in a significant increase in the formation of PHB in Arabidopsis, with a maximum of 14% of the leaf dry weight . The increase in PHB production is most likely due to the higher flux in the plastids of acetyl-CoA, the precursor for PHB synthesis. A detailed study of metabolic fluxes in Arabidopsis plants producing high levels of PHB could help to determine the potential problems and limitations of PHB synthesis in Arabidopsis and could be useful for optimising strategies for the production of PHB in crop plants. The knowledge on PHB production could also be used for the production of PHAs other than PHB. Apart from PHB, no other PHAs have been produced in an eukaryotic system. Arabidopsis will therefore be used as a model system for the production in eukaryotes of more complex PHAs, such as poly(hydroxybutyrate-co-hydroxyvylerate) or medium-chain-lenght-PHAs.
Resumo:
Degradation of fatty acids having cis-double bonds on even-numbered carbons requires the presence of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. Two alternative pathways have been described to degrade these fatty acids. One pathway involves the participation of the enzymes 2, 4-dienoyl-coenzyme A (CoA) reductase and Delta(3)-Delta(2)-enoyl-CoA isomerase, whereas the second involves the epimerization of R-3-hydroxyacyl-CoA via a 3-hydroxyacyl-CoA epimerase or the action of two stereo-specific enoyl-CoA hydratases. Although degradation of these fatty acids in bacteria and mammalian peroxisomes was shown to involve mainly the reductase-isomerase pathway, previous analysis of the relative activity of the enoyl-CoA hydratase II (also called R-3-hydroxyacyl-CoA hydro-lyase) and 2,4-dienoyl-CoA reductase in plants indicated that degradation occurred mainly through the epimerase pathway. We have examined the implication of both pathways in transgenic Arabidopsis expressing the polyhydroxyalkanoate synthase from Pseudomonas aeruginosa in peroxisomes and producing polyhydroxyalkanoate from the 3-hydroxyacyl-CoA intermediates of the beta-oxidation cycle. Analysis of the polyhydroxyalkanoate synthesized in plants grown in media containing cis-10-heptadecenoic or cis-10-pentadecenoic acids revealed a significant contribution of both the reductase-isomerase and epimerase pathways to the degradation of these fatty acids.
Resumo:
BACKGROUND: Little information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives. METHODS: The relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection. RESULTS: The in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39. CONCLUSION: This work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the presence of a very homogenous P. falciparum population circulating in the community. Although CQ+SP could still clear most infections, seven fixed mutations associated with CQ resistance and two fixed mutations related to SP resistance were observed. Whether the absence of mutations in pfATPase6 indicates the efficacy of artemisinin derivatives remains to be proven.
Resumo:
Recommendations for statin use for primary prevention of coronary heart disease (CHD) are based on estimation of the 10-year CHD risk. It is unclear which risk algorithm and guidelines should be used in European populations. Using data from a population-based study in Switzerland, we first assessed 10-year CHD risk and eligibility for statins in 5,683 women and men 35 to 75 years of age without cardiovascular disease by comparing recommendations by the European Society of Cardiology without and with extrapolation of risk to age 60 years, the International Atherosclerosis Society, and the US Adult Treatment Panel III. The proportions of participants classified as high-risk for CHD were 12.5% (15.4% with extrapolation), 3.0%, and 5.8%, respectively. Proportions of participants eligible for statins were 9.2% (11.6% with extrapolation), 13.7%, and 16.7%, respectively. Assuming full compliance to each guideline, expected relative decreases in CHD deaths in Switzerland over a 10-year period would be 16.4% (17.5% with extrapolation), 18.7%, and 19.3%, respectively; the corresponding numbers needed to treat to prevent 1 CHD death would be 285 (340 with extrapolation), 380, and 440, respectively. In conclusion, the proportion of subjects classified as high risk for CHD varied over a fivefold range across recommendations. Following the International Atherosclerosis Society and the Adult Treatment Panel III recommendations might prevent more CHD deaths at the cost of higher numbers needed to treat compared with European Society of Cardiology guidelines.
Resumo:
Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N ≤ 71,225 European ancestry, N ≤ 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10(-24)), CYP1A2 (P = 1 × 10(-23)), FGF5 (P = 1 × 10(-21)), SH2B3 (P = 3 × 10(-18)), MTHFR (P = 2 × 10(-13)), c10orf107 (P = 1 × 10(-9)), ZNF652 (P = 5 × 10(-9)) and PLCD3 (P = 1 × 10(-8)) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
Resumo:
Atherosclerosis, which is influenced by both traditional and nontraditional cardiovascular risk factors and has been characterized as an inflammatory process, is considered to be the main cause of the elevated cardiovascular risk associated with chronic kidney disease. The inflammatory component of atherosclerosis can be separated into an innate immune response involving monocytes and macrophages that respond to the excessive uptake of lipoproteins and an adaptive immune response that involves antigen-specific T cells. Concurrent with the influx of immune cells to the site of atherosclerotic lesion, the role of the adaptive immune response gradually increases. One of those cells are represented by the CD4+/CD25+ Tregs, which play indispensable roles in the maintenance of natural self-tolerance and negative control of pathological, as well as physiological, immune responses. Altered self-antigens such as oxidized LDLs may induce the development of CD4+/CD25+ Tregs with atheroprotective properties. However, atherosclerosis may be promoted by an imbalance between regulatory and pathogenic immunity that may be represented by the low expression of the forkhead box transcription factor (Foxp3) in CD4+/CD25+ Tregs. Such a defect may break immunologic tolerance and alter both specific and bystander immune suppression, leading to exacerbation of plaque development. Patients with end-stage kidney disease (ESKD) display a cellular immune dysfunction and accelerated atherosclerosis. Uremic solutes that accumulate during ESKD may be involved in these processes. In patients with ESKD and especially in those that are chronically hemodialyzed, oxidative stress induced by oxidized LDLs may increase CD4+/CD25+ Treg sensitivity to Fas-mediated apoptosis as a consequence of specific dysregulation of IL-2 expression. This review will focus on the current state of knowledge regarding the influence of CD4+/CD25+ Tregs on atherogenesis in patients with ESKD, and the potential effect of statins on the circulating number and the functional properties of these cells.
Resumo:
Hyperhomocysteinemia represents an independent risk factor for atherothrombotic disease. Physiopathological mechanisms of accelerated progression of atherosclerosis in presence of hyperhomocysteinemia are complex. Herein we report a clinical case which emphasis the importance of screening elevated homocystein in the absence of conventional risk factors in patients who suffer from premature atherosclerosis.
Traitement des dyslipidémies et atteinte hépatique [Lipid-lowering treatment and liver dysfunction].
Resumo:
Statins are a cornerstone of cardiovascular prevention. Their utilization is mostly well tolerated and safe: the commonly reported hepatic adverse effect is an asymptomatic, reversible and dose-related increase in liver enzyme levels occurring in case of risks factors. Statins do not worsen liver function in most patients with chronic liver diseases, including nonalcoholic fatty liver disease and hepatitis C, and might be used cautionsly. However, decompensated cirrhosis and acute liver failure are contraindications for statins. Routine hepatic biochemical test monitoring is questioned and might be performed in following situations: chronic liver diseases, alcohol consumption, drug interactions. Other causes should be screened and treatment be temporarily withheld in case of an ALT elevation > 3 times the upper limit of the norm.
Resumo:
Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondarymetabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Herewe showthat, in the legumeMedicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD)quality control system tomanagethe production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membraneanchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulationis prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues.
Resumo:
OBJECTIVE: To evaluate the public health impact of statin prescribing strategies based on the Justification for the Use of Statins in Primary Prevention: An Intervention Trial Evaluating Rosuvastatin Study (JUPITER). METHODS: We studied 2268 adults aged 35-75 without cardiovascular disease in a population-based study in Switzerland in 2003-2006. We assessed the eligibility for statins according to the Adult Treatment Panel III (ATPIII) guidelines, and by adding "strict" (hs-CRP≥2.0mg/L and LDL-cholesterol <3.4mmol/L), and "extended" (hs-CRP≥2.0mg/L alone) JUPITER-like criteria. We estimated the proportion of CHD deaths potentially prevented over 10years in the Swiss population. RESULTS: Fifteen % were already taking statins, 42% were eligible by ATPIII guidelines, 53% by adding "strict", and 62% by adding "extended" criteria, with a total of 19% newly eligible. The number needed to treat with statins to avoid one CHD death over 10years was 38 for ATPIII, 84 for "strict" and 92 for "extended" JUPITER-like criteria. ATPIII would prevent 17% of CHD deaths, compared with 20% for ATPIII+"strict" and 23% for ATPIII + "extended" criteria (+6%). CONCLUSION: Implementing JUPITER-like strategies would make statin prescribing for primary prevention more common and less efficient than it is with current guidelines.