955 resultados para Digital image processing
Resumo:
Residue Number System (RNS) based Finite Impulse Response (FIR) digital filters and traditional FIR filters. This research is motivated by the importance of an efficient filter implementation for digital signal processing. The comparison is done in terms of speed and area requirement for various filter specifications. RNS based FIR filters operate more than three times faster and consumes only about 60% of the area than traditional filter when number of filter taps is more than 32. The area for RNS filter is increasing at a lesser rate than that for traditional resulting in lower power consumption. RNS is a nonweighted number system without carry propogation between different residue digits.This enables simultaneous parallel processing on all the digits resulting in high speed addition and multiplication in the RNS domain
Resumo:
Content Based Image Retrieval is one of the prominent areas in Computer Vision and Image Processing. Recognition of handwritten characters has been a popular area of research for many years and still remains an open problem. The proposed system uses visual image queries for retrieving similar images from database of Malayalam handwritten characters. Local Binary Pattern (LBP) descriptors of the query images are extracted and those features are compared with the features of the images in database for retrieving desired characters. This system with local binary pattern gives excellent retrieval performance
Resumo:
As the technologies for the fabrication of high quality microarray advances rapidly, quantification of microarray data becomes a major task. Gridding is the first step in the analysis of microarray images for locating the subarrays and individual spots within each subarray. For accurate gridding of high-density microarray images, in the presence of contamination and background noise, precise calculation of parameters is essential. This paper presents an accurate fully automatic gridding method for locating suarrays and individual spots using the intensity projection profile of the most suitable subimage. The method is capable of processing the image without any user intervention and does not demand any input parameters as many other commercial and academic packages. According to results obtained, the accuracy of our algorithm is between 95-100% for microarray images with coefficient of variation less than two. Experimental results show that the method is capable of gridding microarray images with irregular spots, varying surface intensity distribution and with more than 50% contamination
Resumo:
The standard separable two dimensional wavelet transform has achieved a great success in image denoising applications due to its sparse representation of images. However it fails to capture efficiently the anisotropic geometric structures like edges and contours in images as they intersect too many wavelet basis functions and lead to a non-sparse representation. In this paper a novel de-noising scheme based on multi directional and anisotropic wavelet transform called directionlet is presented. The image denoising in wavelet domain has been extended to the directionlet domain to make the image features to concentrate on fewer coefficients so that more effective thresholding is possible. The image is first segmented and the dominant direction of each segment is identified to make a directional map. Then according to the directional map, the directionlet transform is taken along the dominant direction of the selected segment. The decomposed images with directional energy are used for scale dependent subband adaptive optimal threshold computation based on SURE risk. This threshold is then applied to the sub-bands except the LLL subband. The threshold corrected sub-bands with the unprocessed first sub-band (LLL) are given as input to the inverse directionlet algorithm for getting the de-noised image. Experimental results show that the proposed method outperforms the standard wavelet-based denoising methods in terms of numeric and visual quality
Resumo:
The basic concepts of digital signal processing are taught to the students in engineering and science. The focus of the course is on linear, time invariant systems. The question as to what happens when the system is governed by a quadratic or cubic equation remains unanswered in the vast majority of literature on signal processing. Light has been shed on this problem when John V Mathews and Giovanni L Sicuranza published the book Polynomial Signal Processing. This book opened up an unseen vista of polynomial systems for signal and image processing. The book presented the theory and implementations of both adaptive and non-adaptive FIR and IIR quadratic systems which offer improved performance than conventional linear systems. The theory of quadratic systems presents a pristine and virgin area of research that offers computationally intensive work. Once the area of research is selected, the next issue is the choice of the software tool to carry out the work. Conventional languages like C and C++ are easily eliminated as they are not interpreted and lack good quality plotting libraries. MATLAB is proved to be very slow and so do SCILAB and Octave. The search for a language for scientific computing that was as fast as C, but with a good quality plotting library, ended up in Python, a distant relative of LISP. It proved to be ideal for scientific computing. An account of the use of Python, its scientific computing package scipy and the plotting library pylab is given in the appendix Initially, work is focused on designing predictors that exploit the polynomial nonlinearities inherent in speech generation mechanisms. Soon, the work got diverted into medical image processing which offered more potential to exploit by the use of quadratic methods. The major focus in this area is on quadratic edge detection methods for retinal images and fingerprints as well as de-noising raw MRI signals
Resumo:
Super Resolution problem is an inverse problem and refers to the process of producing a High resolution (HR) image, making use of one or more Low Resolution (LR) observations. It includes up sampling the image, thereby, increasing the maximum spatial frequency and removing degradations that arise during the image capture namely aliasing and blurring. The work presented in this thesis is based on learning based single image super-resolution. In learning based super-resolution algorithms, a training set or database of available HR images are used to construct the HR image of an image captured using a LR camera. In the training set, images are stored as patches or coefficients of feature representations like wavelet transform, DCT, etc. Single frame image super-resolution can be used in applications where database of HR images are available. The advantage of this method is that by skilfully creating a database of suitable training images, one can improve the quality of the super-resolved image. A new super resolution method based on wavelet transform is developed and it is better than conventional wavelet transform based methods and standard interpolation methods. Super-resolution techniques based on skewed anisotropic transform called directionlet transform are developed to convert a low resolution image which is of small size into a high resolution image of large size. Super-resolution algorithm not only increases the size, but also reduces the degradations occurred during the process of capturing image. This method outperforms the standard interpolation methods and the wavelet methods, both visually and in terms of SNR values. Artifacts like aliasing and ringing effects are also eliminated in this method. The super-resolution methods are implemented using, both critically sampled and over sampled directionlets. The conventional directionlet transform is computationally complex. Hence lifting scheme is used for implementation of directionlets. The new single image super-resolution method based on lifting scheme reduces computational complexity and thereby reduces computation time. The quality of the super resolved image depends on the type of wavelet basis used. A study is conducted to find the effect of different wavelets on the single image super-resolution method. Finally this new method implemented on grey images is extended to colour images and noisy images
Resumo:
Surface (Lambertain) color is a useful visual cue for analyzing material composition of scenes. This thesis adopts a signal processing approach to color vision. It represents color images as fields of 3D vectors, from which we extract region and boundary information. The first problem we face is one of secondary imaging effects that makes image color different from surface color. We demonstrate a simple but effective polarization based technique that corrects for these effects. We then propose a systematic approach of scalarizing color, that allows us to augment classical image processing tools and concepts for multi-dimensional color signals.
Resumo:
Estudi, disseny i implementació de diferents tècniques d’agrupament de fibres (clustering) per tal d’integrar a la plataforma DTIWeb diferents algorismes de clustering i tècniques de visualització de clústers de fibres de forma que faciliti la interpretació de dades de DTI als especialistes
Resumo:
Aquest projecte s'ha dut a terme amb el Grup de visió per computador del departament d'Arquitectura i Tecnologia de Computadors (ATC) de la Universitat de Girona. Està enfocat a l'anàlisi d'imatges mèdiques, en concret s'analitzaran imatges de pròstata en relació a desenvolupaments que s'estan realitzant en el grup de visió esmentat. Els objectius fixats per aquest projecte són desenvolupar dos mòduls de processamentm d'imatges els quals afrontaran dos blocs important en el tractament d'imatges, aquests dos mòduls seran un pre-processat d'imatges, que constarà de tres filtres i un bloc de segmentació per tal de cercar la pròstata dintre de les imatges a tractar. En el projecte es treballarà amb el llenguatge de programació C++, concretament amb unes llibreries que es denominen ITK (Insight Toolkit ) i són open source enfocades al tractament d'imatges mèdiques. A part d'aquesta eina s'utilitzaran d'altres com les Qt que és una biblioteca d'eines per crear entorns gràfics
Resumo:
L’objectiu d’aquest PFC és estudiar la branca de la detecció d’objectes en vídeos segons el seu moviment. Per fer-ho es crearà un algorisme que sigui capaç de tractar un vídeo, calculant el nombre d’objectes de l’escena i quina és la posició de cada un d’aquests. L’algorisme ha de ser capaç de trobar un conjunt de regions útils i a partir d’aquest, separar-lo en diferents grups, cada un representant un objecte en moviment. La finalitat d’aquest projecte és l’estudi de la detecció d’objectes en vídeo. Intentarem crear un algorisme que ens permeti dur a terme aquest estudi i treure’n conclusions. Pretenem fer un algorisme, o un conjunt d’algorismes, en Matlab que sigui capaç de donat qualsevol vídeo, pugui retornar un conjunt de imatges, o un vídeo, amb els diferents objectes de l’escena destacats. Es faran proves en diferents situacions, des de objectes sintètics amb un moviment clarament definit, fins a proves en seqüències reals extretes de diferents pel•lícules. Per últim es pretén comprovar l’eficiència d’aquest. Ja que el projecte s’emmarca en la línia de recerca de robòtica i visió per computador, la tasca principal serà la manipulació d’imatges. Per tant farem servir el Matlab, ja que les imatges no son res més que matrius i aquest programa permet el càlcul vectorial i matricial d’una manera senzilla i realment eficient
Resumo:
Estudi, disseny i implementació d’un algorisme de visualització de volums i integrar-lo en la plataforma DTIWeb de visualització i processament de dades de DTI. La plataforma DTIWeb és una plataforma desenvolupada conjuntament entre el Laboratori de Gràfics i Imatge de la Universitat de Girona i d’Institut de Diagnòstic per la imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma integra els mètodes bàsics de reconstrucció de fibres del cervell. La principal limitació de la plataforma és que no suporta la visualització de models 3D. Aquest fet limita el seu us en la pràctica clínica habitual ja que es fa difícil la interpretació dels mapes de connectivitat que genera
Resumo:
Els objectius del projecte es divideixen en tres blocs: Primerament, realitzar una segmentació automàtica del contorn d'una imatge on hi ha una massa central. Tot seguit, a partir del contorn trobat, caracteritzar la massa. I finalment, utilitzant les característiques anteriors classificar la massa en benigne o maligne. En el projecte s'utilitza el Matlab com a eina de programació. Concretament les funcions enfocades al processat de imatges del toolbox de Image processing (propi de Matlab) i els classificadors de la PRTools de la Delft University of Technology
Resumo:
A technique for simultaneous localisation and mapping (SLAM) for large scale scenarios is presented. This solution is based on the use of independent submaps of a limited size to map large areas. In addition, a global stochastic map, containing the links between adjacent submaps, is built. The information in both levels is corrected every time a loop is closed: local maps are updated with the information from overlapping maps, and the global stochastic map is optimised by means of constrained minimisation
Resumo:
We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal