980 resultados para Diffusion Mri


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nb is one of the common refractory elements added in Ni, Co and Fe based superalloys. This lead to the formation of brittle topological close packed (tcp) mu phase, which is deleterious to the structure. It mainly grows by interdiffusion and in the present article, the interdiffusion process in different Nb-X (X=Ni, Co, Fe) systems is discussed. The activation energy for interdiffusion is lower in the Co-Nb system (173 kJ/mol) than Fe-Nb system (233 kJ/mol), which is again lower than the value found in the Ni-Nb system (319.7 kJ/mol). The mole fraction of Nb in this phase is less than Fe or Co at stoichiometric compositions in the Nb-Fe (that is Fe7Nb6) and Nb-Co (that is Co7Nb6) systems. On the other hand, the mole fraction of Nb is higher than Ni in the same phase (Ni6Nb2) in Ni-Nb system. However, in all the phases, Nb has lower diffusion rate. Possible diffusion mechanism in this phase is discussed with respect to the crystal structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study is the first report of the utilization of a crown ether as a new and versatile resolving agent for the diffusion edited separation of enantiomers, complex mixtures and constitutional isomers. As a consequence of different binding affinities of enantiomers of a chiral molecule and individual components of the complex mixtures with the crown ether, the molecules diffuse at different rates. The enhanced separation achieved due to matrix assisted diffusion permitted their separation in the diffusion dimension. The generality and wide utility of the new resolving agent and the methodology are demonstrated on diverse examples, such as an organic chiral molecule, constitutional isomers and complex mixture of molecules possessing different functional groups that possess nearly identical molecular weights.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article does not have an abstract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interdiffusion study is conducted in the Au-Cu system, which has complete solid solution in the higher temperature range and ordered phases in the lower temperature range. First experiments are conducted at higher temperatures, where atoms can diffuse randomly. Higher values of interdiffusion coefficients are found in the range of 40-50 at.% Cu. This trend is explained with the help of thermodynamic factor and possible concentration of vacancies. Following an experiment is conducted at 623 K (350 degrees C), where the ordered phases are grown. The interdiffusion coefficients at this temperature are compared after extrapolating the data calculated at higher temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth mechanism of phases and atomic mechanism of diffusion are discussed in the Pd-Sn system. The Kirkendall marker plane location indicates that the PdSn4 phase grows because of diffusion of Sn. Atomic arrangement in the crystal indicates that Sn can diffuse through its own sublattice but Pd cannot diffuse unless antisites are present. The negligible diffusion of Pd indicates the absence of Pd antisites. The activation energy value indicates that the contribution from grain boundary diffusion cannot be neglected although experiments were conducted in the homologous temperature range of 0.7-0.79.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion ordered spectroscopy (DOSY) generally fails to separate the peaks pertaining to isomeric species possessing identical molecular weights and similar hydrodynamic radii. The present study demonstrates the resolution of isomers using alpha/beta-cyclodextrin as a co-solute by Matrix Assisted Diffusion Ordered Spectroscopy. The resolution of isomers has been achieved by measuring the significant differences in the diffusion rates between the positional isomers of aminobenzoic acids, benzenedicarboxylic acids and between the cis, trans isomers, fumaric acid and maleic acid. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of Bi layer (thickness similar to 7 nm) on As2S3 film was extensively studied for different optical applications in which Bi (top layer) as active and diffusing layer and As2S3 as barrier (matrix) layer. Bilayer thin films of Bi/As2S3 were prepared from Bi and As2S3 by thermal evaporation technique under high vacuum. The decrease of optical band gap with the addition of Bi to As2S3 has been explained on the basis of density of states and the increase in disorder in the system. It was found that the efficient changes of optical parameters (transmission, optical band gap, refraction) could be realized due to the photo induced diffusion activated by the focused 532 nm laser irradiation and formation of different bonds. The diffusion of Bi into As2S3 matrix increases the optical band gap producing photo bleaching effect. The changes were characterised by different experimental techniques. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the substrate assisted doping of ZnO nanowires grown by a vapor transport technique. The nanowires were grown non-catalytically on multiwalled carbon nanotubes (MWCNTs) and soda lime glass (SLG). Carbon from MWCNTs and sodium from SLG diffuse into ZnO during the growth and are distributed uniformly and provide doping. An advantage associated with the technique is that no conventional external dopant source is required to obtain doped ZnO nanowires. The diameter, length and hence the aspect ratio can easily be varied by changing the growth conditions. The transport studies on both carbon and sodium doped ZnO support the p-type nature of ZnO. The p-type nature of carbon doped ZnO is stable for at least eight months.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a co nvecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air si de in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the ex perimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete so ot topography. Overall soot production too was low. In case of the air side vortex abundan ce of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density fun ction, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air side in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the experimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete soot topography. Overall soot production too was low. In case of the air side vortex abundance of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density function, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion of pentane isomers in zeolites NaX has been investigated using pulsed field gradient nuclear magnetic resonance (PFG-NMR) and molecular dynamics (MD) techniques respectively. Temperature and concentration dependence of diffusivities have been studied. The diffusivities obtained from NMR are roughly an order of magnitude smaller than those obtained from MD. The dependence of diffusivity on loading at high temperatures exhibits a type I behavior according to the classification of Karger and Pfeifer 1]. NMR diffusivities of the isomers exhibit the order D(n-pentane) > D(isopentane) > D(neopentane). The results from MD suggest that the diffusivities of the isomers follow the order D(n-pentane) < D(isopentane) < D(neopentane). The activation energies from NMR show E-a(n-pentane) < E-a(isopentane) < E-a(neopentane) whereas those from MD suggest the order E-a(n-pentane) > (isopentane) > E-a(neopentane). The latter follows the predictions of levitation effect whereas those of NMR appears to be due to the presence of defects in the zeolite crystals. The differences between diffusivities estimated by NMR and MD are attributed to the longer time and length scales sampled by the NMR technique, as compared to MD. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments are conducted in the W-Si system to understand the diffusion mechanism of the species. The activation energies from integrated diffusion coefficients are calculated as 152 +/- 7 and 301 +/- 40 kJ/mol in the WSi2 and W5Si3 phases, respectively. In both the phases, Si has a much higher diffusion rate compared to W. This is not surprising to find in the WSi2 phase, if we consider the number of nearest neighbors for both the elements in the crystal. The diffusion of W in this phase indicates the presence of W antisites. The faster diffusion rate of Si in the W5Si3 phase indicates the presence of higher concentration of vacancies on the Si sublattice compared to W sublattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order dependencies. In this study, we propose a framework where in phase synchronization (PS) between brain regions is characterized using a new metric ``correlation between probabilities of recurrence'' (CPR) and subsequent graph-theoretic analysis of the ensuing networks. We applied this method to resting state fMRI data obtained from human subjects with and without administration of propofol anesthetic. Our results showed decreased PS during anesthesia and a biologically more plausible community structure using CPR rather than linear correlation. We conclude that CPR provides an attractive nonparametric method for modeling interactions in brain networks as compared to standard correlation for obtaining physiologically meaningful insights about brain function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel numerical method based on a generalized eigenvalue decomposition for solving the diffusion equation governing the correlation diffusion of photons in turbid media. Medical imaging modalities such as diffuse correlation tomography and ultrasound-modulated optical tomography have the (elliptic) diffusion equation parameterized by a time variable as the forward model. Hitherto, for the computation of the correlation function, the diffusion equation is solved repeatedly over the time parameter. We show that the use of a certain time-independent generalized eigenfunction basis results in the decoupling of the spatial and time dependence of the correlation function, thus allowing greater computational efficiency in arriving at the forward solution. Besides presenting the mathematical analysis of the generalized eigenvalue problem on the basis of spectral theory, we put forth the numerical results that compare the proposed numerical method with the standard technique for solving the diffusion equation.