946 resultados para Diesel emissions
Resumo:
A technique to measure wall flow variation in Diesel Particle Filters (DPFs) is described. In a recent paper, it was shown how the flow distribution in DPFs could be measured in a non-destructive manner. This involved measuring the progressive dilution of a tracer gas introduced at the "outlet" channel upstream end. In the present paper, a significant further improvement to this technique is described, in which only a single probe is required, rather than the two of the previous technique. The single, traversable, probe consists of a controllable flow sink, and slightly downstream, a tracer gas supply. By controlling the sink flow rate such that a very small concentration of tracer gas is aspirated into it, the total flow up to that location in the channel is determined. Typical results showing the axial variation in the wall flow for known wall blockage cases are presented. It is suggested that this technique could be used to interpret the soot loading in the filter channels in a non-intrusive way.
Auto-Oil Program Phase II Heavy Hydrocarbon Study: Analysis of Engine-Out Hydrocarbon Emissions Data
Reducing Motor Vehicle Greenhouse Gas Emissions in a Non-California State: A Case Study of Minnesota
Resumo:
The embodied energy (EE) and gas emissions of four design alternatives for an embankment retaining wall system are analyzed for a hypothetical highway construction project. The airborne emissions considered are carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2O), sulphur oxides (SO X), and nitrogen oxides (NO X). The process stages considered in this study are the initial materials production, transportation of construction machineries and materials, machinery operation during installation, and machinery depreciations. The objectives are (1) to determine whether there are statistically significant differences among the structural alternatives; (2) to understand the relative proportions of impacts for the process stages within each design; (3) to contextualize the impacts to other aspects in life by comparing the computed EE values to household energy consumption and car emission values; and (4) to examine the validity of the adopted EE as an environmental impact indicator through comparison with the amount of gas emissions. For the project considered in this study, the calculated results indicate that propped steel sheet pile wall and minipile wall systems have less embodied energy and gas emissions than cantilever steel tubular wall and secant concrete pile wall systems. The difference in CO 2 emission for the retaining wall of 100 m length between the most and least environmentally preferable wall design is equivalent to an average 2.0 L family car being driven for 6.2 million miles (or 62 cars with a mileage of 10,000 miles/year for 10 years). The impacts in construction are generally notable and careful consideration and optimization of designs will reduce such impacts. The use of recycled steel or steel pile as reinforcement bar is effective in reducing the environmental impact. The embodied energy value of a given design is correlated to the amount of gas emissions. © 2011 American Society of Civil Engineers.
Resumo:
Consumer goods manufacturers aiming to reduce the environmental impact associated with their products commonly pursue incremental change strategies, but more radical approaches may be required if we are to address the challenges of sustainable consumption. One strategy to realize step change reductions is to prepare a portfolio of innovations providing different levels of impact reduction in exchange for different levels of organizational resource commitment. In this research a tool is developed to support this strategy, starting with the assumption that through brainstorming or other eco-innovation approaches, a long-list of candidate innovations has been created. The tool assesses the potential greenhouse gas benefit of an innovative option against the difficulty of its implementation. A simple greenhouse gas benefit assessment method based on streamlined LCA was used to analyze impact reduction potential, and a novel measure of implementation difficulty was developed. The predictions of implementation difficulty were compared against expert opinion, and showed similar results indicating the measure can be used sensibly to predict implementation difficulty. The assessment of the environmental gain versus implementation difficulty is visualized in a matrix, showing the trade-offs of several options. The tool is deliberately simple with scalar measures of CO 2 emissions benefits and implementation difficulty so tool users must remain aware of other potential environmental burdens besides greenhouse gases (e.g. water, waste). In addition, although relative life cycle emissions benefits of an option may be low, the absolute impact of an option can be high and there may be other co-benefits, which could justify higher levels of implementation difficulty. Different types of consumer products (e.g. household, personal care, foods) have been evaluated using the tool. Initial trials of the tool within Unilever demonstrate that the tool facilitates rapid evaluation of low-carbon innovations. © 2011 Elsevier Ltd. All rights reserved.