974 resultados para Dependent Schrodinger-equation
Resumo:
Obesity is a major public health problem in both developed and developing countries. The body mass index (BMI) is the most common index used to define obesity. The universal application of the same BMI classification across different ethnic groups is being challenged due to the inability of the index to differentiate fat mass (FM) and fat�]free mass (FFM) and the recognized ethnic differences in body composition. A better understanding of the body composition of Asian children from different backgrounds would help to better understand the obesity�]related health risks of people in this region. Moreover, the limitations of the BMI underscore the necessity to use where possible, more accurate measures of body fat assessment in research and clinical settings in addition to BMI, particularly in relation to the monitoring of prevention and treatment efforts. The aim of the first study was to determine the ethnic difference in the relationship between BMI and percent body fat (%BF) in pre�]pubertal Asian children from China, Lebanon, Malaysia, the Philippines, and Thailand. A total of 1039 children aged 8�]10 y were recruited using a non�]random purposive sampling approach aiming to encompass a wide BMI range from the five countries. Percent body fat (%BF) was determined using the deuterium dilution technique to quantify total body water (TBW) and subsequently derive proportions of FM and FFM. The study highlighted the sex and ethnic differences between BMI and %BF in Asian children from different countries. Girls had approximately 4.0% higher %BF compared with boys at a given BMI. Filipino boys tended to have a lower %BF than their Chinese, Lebanese, Malay and Thai counterparts at the same age and BMI level (corrected mean %BF was 25.7�}0.8%, 27.4�}0.4%, 27.1�}0.6%, 27.7�}0.5%, 28.1�}0.5% for Filipino, Chinese, Lebanese, Malay and Thai boys, respectively), although they differed significantly from Thai and Malay boys. Thai girls had approximately 2.0% higher %BF values than Chinese, Lebanese, Filipino and Malay counterparts (however no significant difference was seen among the four ethnic groups) at a given BMI (corrected mean %BF was 31.1�}0.5%, 28.6�}0.4%, 29.2�}0.6%, 29.5�}0.6%, 29.5�}0.5% for Thai, Chinese, Lebanese, Malay and Filipino girls, respectively). However, the ethnic difference in BMI�]%BF relationship varied by BMI. Compared with Caucasians, Asian children had a BMI 3�]6 units lower for a given %BF. More than one third of obese Asian children in the study were not identified using the WHO classification and more than half were not identified using the International Obesity Task Force (IOTF) classification. However, use of the Chinese classification increased the sensitivity by 19.7%, 18.1%, 2.3%, 2.3%, and 11.3% for Chinese, Lebanese, Malay, Filipino and Thai girls, respectively. A further aim of the first study was to determine the ethnic difference in body fat distribution in pre�]pubertal Asian children from China, Lebanon, Malaysia, and Thailand. The skin fold thicknesses, height, weight, waist circumference (WC) and total adiposity (as determined by deuterium dilution technique) of 922 children from the four countries was assessed. Chinese boys and girls had a similar trunk�]to�]extremity skin fold thickness ratio to Thai counterparts and both groups had higher ratios than the Malays and Lebanese at a given total FM. At a given BMI, both Chinese and Thai boys and girls had a higher WC than Malays and Lebanese (corrected mean WC was 68.1�}0.2 cm, 67.8�}0.3 cm, 65.8�}0.4 cm, 64.1�}0.3 cm for Chinese, Thai, Lebanese and Malay boys, respectively; 64.2�}0.2 cm, 65.0�}0.3 cm, 62.9�}0.4 cm, 60.6�}0.3 cm for Chinese, Thai, Lebanese and Malay girls, respectively). Chinese boys and girls had lower trunk fat adjusted subscapular/suprailiac skinfold ratio compared with Lebanese and Malay counterparts. The second study aimed to develop and cross�]validate bioelectrical impedance analysis (BIA) prediction equations of TBW and FFM for Asian pre�]pubertal children from China, Lebanon, Malaysia, the Philippines, and Thailand. Data on height, weight, age, gender, resistance and reactance measured by BIA were collected from 948 Asian children (492 boys and 456 girls) aged 8�]10 y from the five countries. The deuterium dilution technique was used as the criterion method for the estimation of TBW and FFM. The BIA equations were developed from the validation group (630 children randomly selected from the total sample) using stepwise multiple regression analysis and cross�]validated in a separate group (318 children) using the Bland�]Altman approach. Age, gender and ethnicity influenced the relationship between the resistance index (RI = height2/resistance), TBW and FFM. The BIA prediction equation for the estimation of TBW was: TBW (kg) = 0.231�~Height2 (cm)/resistance (ƒ¶) + 0.066�~Height (cm) + 0.188�~Weight (kg) + 0.128�~Age (yr) + 0.500�~Sex (male=1, female=0) . 0.316�~Ethnicity (Thai ethnicity=1, others=0) �] 4.574, and for the estimation of FFM: FFM (kg) = 0.299�~Height2 (cm)/resistance (ƒ¶) + 0.086�~Height (cm) + 0.245�~Weight (kg) + 0.260�~Age (yr) + 0.901�~Sex (male=1, female=0) �] 0.415�~Ethnicity (Thai ethnicity=1, others=0) �] 6.952. The R2 was 88.0% (root mean square error, RSME = 1.3 kg), 88.3% (RSME = 1.7 kg) for TBW and FFM equation, respectively. No significant difference between measured and predicted TBW and between measured and predicted FFM for the whole cross�]validation sample was found (bias = �]0.1�}1.4 kg, pure error = 1.4�}2.0 kg for TBW and bias = �]0.2�}1.9 kg, pure error = 1.8�}2.6 kg for FFM). However, the prediction equation for estimation of TBW/FFM tended to overestimate TBW/FFM at lower levels while underestimate at higher levels of TBW/FFM. Accuracy of the general equation for TBW and FFM compared favorably with both BMI�]specific and ethnic�]specific equations. There were significant differences between predicted TBW and FFM from external BIA equations derived from Caucasian populations and measured values in Asian children. There were three specific aims of the third study. The first was to explore the relationship between obesity and metabolic syndrome and abnormalities in Chinese children. A total of 608 boys and 800 girls aged 6�]12 y were recruited from four cities in China. Three definitions of pediatric metabolic syndrome and abnormalities were used, including the International Diabetes Federation (IDF) and National Cholesterol Education Program (NCEP) definition for adults modified by Cook et al. and de Ferranti et al. The prevalence of metabolic syndrome varied with different definitions, was highest using the de Ferranti definition (5.4%, 24.6% and 42.0%, respectively for normal�]weight, overweight and obese children), followed by the Cook definition (1.5%, 8.1%, and 25.1%, respectively), and the IDF definition (0.5%, 1.8% and 8.3%, respectively). Overweight and obese children had a higher risk of developing the metabolic syndrome compared to normal�]weight children (odds ratio varied with different definitions from 3.958 to 6.866 for overweight children, and 12.640�]26.007 for obese children). Overweight and obesity also increased the risk of developing metabolic abnormalities. Central obesity and high triglycerides (TG) were the most common while hyperglycemia was the least frequent in Chinese children regardless of different definitions. The second purpose was to determine the best obesity index for the prediction of cardiovascular (CV) risk factor clustering across a 2�]y follow�]up among BMI, %BF, WC and waist�]to�]height ratio (WHtR) in Chinese children. Height, weight, WC, %BF as determined by BIA, blood pressure, TG, high�]density lipoprotein cholesterol (HDL�]C), and fasting glucose were collected at baseline and 2 years later in 292 boys and 277 girls aged 8�]10 y. The results showed the percentage of children who remained overweight/obese defined on the basis of BMI, WC, WHtR and %BF was 89.7%, 93.5%, 84.5%, and 80.4%, respectively after 2 years. Obesity indices at baseline significantly correlated with TG, HDL�]C, and blood pressure at both baseline and 2 years later with a similar strength of correlations. BMI at baseline explained the greatest variance of later blood pressure. WC at baseline explained the greatest variance of later HDL�]C and glucose, while WHtR at baseline was the main predictor of later TG. Receiver�]operating characteristic (ROC) analysis explored the ability of the four indices to identify the later presence of CV risk. The overweight/obese children defined on the basis of BMI, WC, WHtR or %BF were more likely to develop CV risk 2 years later with relative risk (RR) scores of 3.670, 3.762, 2.767, and 2.804, respectively. The final purpose of the third study was to develop age�] and gender�]specific percentiles of WC and WHtR and cut�]off points of WC and WHtR for the prediction of CV risk in Chinese children. Smoothed percentile curves of WC and WHtR were produced in 2830 boys and 2699 girls aged 6�]12 y randomly selected from southern and northern China using the LMS method. The optimal age�] and gender�]specific thresholds of WC and WHtR for the prediction of cardiovascular risk factors clustering were derived in a sub�]sample (n=1845) by ROC analysis. Age�] and gender�]specific WC and WHtR percentiles were constructed. The WC thresholds were at the 90th and 84th percentiles for Chinese boys and girls, respectively, with sensitivity and specificity ranging from 67.2% to 83.3%. The WHtR thresholds were at the 91st and 94th percentiles for Chinese boys and girls, respectively, with sensitivity and specificity ranging from 78.6% to 88.9%. The cut�]offs of both WC and WHtR were age�] and gender�]dependent. In conclusion, the current thesis quantifies the ethnic differences in the BMI�]%BF relationship and body fat distribution between Asian children from different origins and confirms the necessity to consider ethnic differences in body composition when developing BMI and other obesity index criteria for obesity in Asian children. Moreover, ethnicity is also important in BIA prediction equations. In addition, WC and WHtR percentiles and thresholds for the prediction of CV risk in Chinese children differ from other populations. Although there was no advantage of WC or WHtR over BMI or %BF in the prediction of CV risk, obese children had a higher risk of developing the metabolic syndrome and abnormalities than normal�]weight children regardless of the obesity index used.
Resumo:
This research is one of several ongoing studies conducted within the IT Professional Services (ITPS) research programme at Queensland University of Technology (QUT). In 2003, ITPS introduced the IS-Impact model, a measurement model for measuring information systems success from the viewpoint of multiple stakeholders. The model, along with its instrument, is robust, simple, yet generalisable, and yields results that are comparable across time, stakeholders, different systems and system contexts. The IS-Impact model is defined as “a measure at a point in time, of the stream of net benefits from the Information System (IS), to date and anticipated, as perceived by all key-user-groups”. The model represents four dimensions, which are ‘Individual Impact’, ‘Organizational Impact’, ‘Information Quality’ and ‘System Quality’. The two Impact dimensions measure the up-to-date impact of the evaluated system, while the remaining two Quality dimensions act as proxies for probable future impacts (Gable, Sedera & Chan, 2008). To fulfil the goal of ITPS, “to develop the most widely employed model” this research re-validates and extends the IS-Impact model in a new context. This method/context-extension research aims to test the generalisability of the model by addressing known limitations of the model. One of the limitations of the model relates to the extent of external validity of the model. In order to gain wide acceptance, a model should be consistent and work well in different contexts. The IS-Impact model, however, was only validated in the Australian context, and packaged software was chosen as the IS understudy. Thus, this study is concerned with whether the model can be applied in another different context. Aiming for a robust and standardised measurement model that can be used across different contexts, this research re-validates and extends the IS-Impact model and its instrument to public sector organisations in Malaysia. The overarching research question (managerial question) of this research is “How can public sector organisations in Malaysia measure the impact of information systems systematically and effectively?” With two main objectives, the managerial question is broken down into two specific research questions. The first research question addresses the applicability (relevance) of the dimensions and measures of the IS-Impact model in the Malaysian context. Moreover, this research question addresses the completeness of the model in the new context. Initially, this research assumes that the dimensions and measures of the IS-Impact model are sufficient for the new context. However, some IS researchers suggest that the selection of measures needs to be done purposely for different contextual settings (DeLone & McLean, 1992, Rai, Lang & Welker, 2002). Thus, the first research question is as follows, “Is the IS-Impact model complete for measuring the impact of IS in Malaysian public sector organisations?” [RQ1]. The IS-Impact model is a multidimensional model that consists of four dimensions or constructs. Each dimension is represented by formative measures or indicators. Formative measures are known as composite variables because these measures make up or form the construct, or, in this case, the dimension in the IS-Impact model. These formative measures define different aspects of the dimension, thus, a measurement model of this kind needs to be tested not just on the structural relationship between the constructs but also the validity of each measure. In a previous study, the IS-Impact model was validated using formative validation techniques, as proposed in the literature (i.e., Diamantopoulos and Winklhofer, 2001, Diamantopoulos and Siguaw, 2006, Petter, Straub and Rai, 2007). However, there is potential for improving the validation testing of the model by adding more criterion or dependent variables. This includes identifying a consequence of the IS-Impact construct for the purpose of validation. Moreover, a different approach is employed in this research, whereby the validity of the model is tested using the Partial Least Squares (PLS) method, a component-based structural equation modelling (SEM) technique. Thus, the second research question addresses the construct validation of the IS-Impact model; “Is the IS-Impact model valid as a multidimensional formative construct?” [RQ2]. This study employs two rounds of surveys, each having a different and specific aim. The first is qualitative and exploratory, aiming to investigate the applicability and sufficiency of the IS-Impact dimensions and measures in the new context. This survey was conducted in a state government in Malaysia. A total of 77 valid responses were received, yielding 278 impact statements. The results from the qualitative analysis demonstrate the applicability of most of the IS-Impact measures. The analysis also shows a significant new measure having emerged from the context. This new measure was added as one of the System Quality measures. The second survey is a quantitative survey that aims to operationalise the measures identified from the qualitative analysis and rigorously validate the model. This survey was conducted in four state governments (including the state government that was involved in the first survey). A total of 254 valid responses were used in the data analysis. Data was analysed using structural equation modelling techniques, following the guidelines for formative construct validation, to test the validity and reliability of the constructs in the model. This study is the first research that extends the complete IS-Impact model in a new context that is different in terms of nationality, language and the type of information system (IS). The main contribution of this research is to present a comprehensive, up-to-date IS-Impact model, which has been validated in the new context. The study has accomplished its purpose of testing the generalisability of the IS-Impact model and continuing the IS evaluation research by extending it in the Malaysian context. A further contribution is a validated Malaysian language IS-Impact measurement instrument. It is hoped that the validated Malaysian IS-Impact instrument will encourage related IS research in Malaysia, and that the demonstrated model validity and generalisability will encourage a cumulative tradition of research previously not possible. The study entailed several methodological improvements on prior work, including: (1) new criterion measures for the overall IS-Impact construct employed in ‘identification through measurement relations’; (2) a stronger, multi-item ‘Satisfaction’ construct, employed in ‘identification through structural relations’; (3) an alternative version of the main survey instrument in which items are randomized (rather than blocked) for comparison with the main survey data, in attention to possible common method variance (no significant differences between these two survey instruments were observed); (4) demonstrates a validation process of formative indexes of a multidimensional, second-order construct (existing examples mostly involved unidimensional constructs); (5) testing the presence of suppressor effects that influence the significance of some measures and dimensions in the model; and (6) demonstrates the effect of an imbalanced number of measures within a construct to the contribution power of each dimension in a multidimensional model.
Resumo:
Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.
Resumo:
Eukaryotic cell cycle progression is mediated by phosphorylation of protein substrates by cyclin-dependent kinases (CDKs). A critical substrate of CDKs is the product of the retinoblastoma tumor suppressor gene, pRb, which inhibits G1-S phase cell cycle progression by binding and repressing E2F transcription factors. CDK-mediated phosphorylation of pRb alleviates this inhibitory effect to promote G1-S phase cell cycle progression. pRb represses transcription by binding to the E2F transactivation domain and recruiting the mSin3·histone deacetylase (HDAC) transcriptional repressor complex via the retinoblastoma-binding protein 1 (RBP1). RBP1 binds to the pocket region of pRb via an LXCXE motif and to the SAP30 subunit of the mSin3·HDAC complex and, thus, acts as a bridging protein in this multisubunit complex. In the present study we identified RBP1 as a novel CDK substrate. RBP1 is phosphorylated by CDK2 on serines 864 and 1007, which are N- and C-terminal to the LXCXE motif, respectively. CDK2-mediated phosphorylation of RBP1 or pRb destabilizes their interaction in vitro, with concurrent phosphorylation of both proteins leading to their dissociation. Consistent with these findings, RBP1 phosphorylation is increased during progression from G 1 into S-phase, with a concurrent decrease in its association with pRb in MCF-7 breast cancer cells. These studies provide new mechanistic insights into CDK-mediated regulation of the pRb tumor suppressor during cell cycle progression, demonstrating that CDK-mediated phosphorylation of both RBP1 and pRb induces their dissociation to mediate release of the mSin3·HDAC transcriptional repressor complex from pRb to alleviate transcriptional repression of E2F.
Resumo:
Thin films of expoxy nanocomposites modified by multiwall carbon nanotubes (MWCNTs) were prepared by shear mixing and spin casting. The electrical behaviour and its dependence with temperature between 243 and 353 degrees Kelvin were characterized by measuring the direct current (DC) conductivity. Depending on the fabrication process, both linear and non-linear relationships between conductivity and temperature were observed. In addition, the thermal history also played a role in dictating the conductivity. The implications of these observations for potential application of these files as strain sensors are discussed.
Resumo:
For over half a century, it has been known that the rate of morphological evolution appears to vary with the time frame of measurement. Rates of microevolutionary change, measured between successive generations, were found to be far higher than rates of macroevolutionary change inferred from the fossil record. More recently, it has been suggested that rates of molecular evolution are also time dependent, with the estimated rate depending on the timescale of measurement. This followed surprising observations that estimates of mutation rates, obtained in studies of pedigrees and laboratory mutation-accumulation lines, exceeded long-term substitution rates by an order of magnitude or more. Although a range of studies have provided evidence for such a pattern, the hypothesis remains relatively contentious. Furthermore, there is ongoing discussion about the factors that can cause molecular rate estimates to be dependent on time. Here we present an overview of our current understanding of time-dependent rates. We provide a summary of the evidence for time-dependent rates in animals, bacteria and viruses. We review the various biological and methodological factors that can cause rates to be time dependent, including the effects of natural selection, calibration errors, model misspecification and other artefacts. We also describe the challenges in calibrating estimates of molecular rates, particularly on the intermediate timescales that are critical for an accurate characterization of time-dependent rates. This has important consequences for the use of molecular-clock methods to estimate timescales of recent evolutionary events.
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
Young novice drivers constitute a major public health concern due to the number of crashes in which they are involved, and the resultant injuries and fatalities. Previous research suggests psychological traits (reward sensitivity, sensation seeking propensity), and psychological states (anxiety, depression) influence their risky behaviour. The relationships between gender, anxiety, depression, reward sensitivity, sensation seeking propensity and risky driving are explored. Participants (390 intermediate drivers, 17-25 years) completed two online surveys at a six month interval. Surveys comprised sociodemographics, Brief Sensation Seeking Scale, Kessler’s Psychological Distress Scale, an abridged Sensitivity to Reward Questionnaire, and risky driving behaviour was measured by the Behaviour of Young Novice Drivers Scale. Structural equation modelling revealed anxiety, reward sensitivity and sensation seeking propensity predicted risky driving. Gender was a moderator, with only reward sensitivity predicting risky driving for males. Future interventions which consider the role of rewards, sensation seeking, and mental health may contribute to improved road safety for younger and older road users alike.
Resumo:
Residual amplitude modulation (RAM) mechanisms in electro-optic phase modulators are detrimental in applications that require high purity phase modulation of the incident laser beam. While the origins of RAMare not fully understood, measurements have revealed that it depends on the beam properties of the laser as well as the properties of the medium. Here we present experimental and theoretical results that demonstrate, for the first time, the dependence of RAM production in electro-optic phase modulators on beam intensity. The results show an order of magnitude increase in the level of RAM, around 10 dB, with a fifteenfold enhancement in the input intensity from 12 to 190 mW/mm 2. We show that this intensity dependent RAM is photorefractive in origin. © 2012 Optical Society of America.
Resumo:
We present experimental and theoretical results of the intensity dependence of residual amplitude modulation (RAM) production in electro-optic phase modulators. By utilizing the anisotropy of the medium, we show that RAM has a photorefractive origin.
Resumo:
Recently, some authors have considered a new diffusion model–space and time fractional Bloch-Torrey equation (ST-FBTE). Magin et al. (2008) have derived analytical solutions with fractional order dynamics in space (i.e., _ = 1, β an arbitrary real number, 1 < β ≤ 2) and time (i.e., 0 < α < 1, and β = 2), respectively. Yu et al. (2011) have derived an analytical solution and an effective implicit numerical method for solving ST-FBTEs, and also discussed the stability and convergence of the implicit numerical method. However, due to the computational overheads necessary to perform the simulations for nuclear magnetic resonance (NMR) in three dimensions, they present a study based on a two-dimensional example to confirm their theoretical analysis. Alternating direction implicit (ADI) schemes have been proposed for the numerical simulations of classic differential equations. The ADI schemes will reduce a multidimensional problem to a series of independent one-dimensional problems and are thus computationally efficient. In this paper, we consider the numerical solution of a ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. A fractional alternating direction implicit scheme (FADIS) for the ST-FBTE in 3-D is proposed. Stability and convergence properties of the FADIS are discussed. Finally, some numerical results for ST-FBTE are given.
Resumo:
In recent years, it has been found that many phenomena in engineering, physics, chemistry and other sciences can be described very successfully by models using mathematical tools from fractional calculus. Recently, noted a new space and time fractional Bloch-Torrey equation (ST-FBTE) has been proposed (see Magin et al. (2008)), and successfully applied to analyse diffusion images of human brain tissues to provide new insights for further investigations of tissue structures. In this paper, we consider the ST-FBTE on a finite domain. The time and space derivatives in the ST-FBTE are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Firstly, we propose a new effective implicit numerical method (INM) for the STFBTE whereby we discretize the Riesz fractional derivative using a fractional centered difference. Secondly, we prove that the implicit numerical method for the ST-FBTE is unconditionally stable and convergent, and the order of convergence of the implicit numerical method is ( T2 - α + h2 x + h2 y + h2 z ). Finally, some numerical results are presented to support our theoretical analysis.
Resumo:
Percolation flow problems are discussed in many research fields, such as seepage hydraulics, groundwater hydraulics, groundwater dynamics and fluid dynamics in porous media. Many physical processes appear to exhibit fractional-order behavior that may vary with time, or space, or space and time. The theory of pseudodifferential operators and equations has been used to deal with this situation. In this paper we use a fractional Darcys law with variable order Riemann-Liouville fractional derivatives, this leads to a new variable-order fractional percolation equation. In this paper, a new two-dimensional variable-order fractional percolation equation is considered. A new implicit numerical method and an alternating direct method for the two-dimensional variable-order fractional model is proposed. Consistency, stability and convergence of the implicit finite difference method are established. Finally, some numerical examples are given. The numerical results demonstrate the effectiveness of the methods. This technique can be used to simulate a three-dimensional variable-order fractional percolation equation.
Resumo:
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.