974 resultados para Delta-winglets vortex generators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the design of high-speed low-power electrical generators for unmanned aircraft and spacecraft, maximization of specific output (power/weight) is of prime importance. Several magnetic circuit configurations (radial-field, axial-field, flux-squeezing, homopolar) have been proposed, and in this paper the relative merits of these configurations are subjected to a quantitative investigation over the speed range 10 000–100000 rev/min and power range 250 W-10 kW. The advantages of incorporating new high energy-density magnetic materials are described. Part I deals with establishing an equivalent circuit for permanent-magnet generators. For each configuration the equivalent circuit parameters are related to the physical dimensions of the generator components and an optimization procedure produces a minimum volume design at discrete output powers and operating speeds. The technique is illustrated by a quantitative comparison of the specific outputs of conventional radial-field generators with samarium cobalt and alnico magnets. In Part II the specific outputs of conventional, flux-squeezing, and claw-rotor magnetic circuit configurations are compared. The flux-squeezing configuration is shown to produce the highest specific output for small sizes whereas the conventional configuration is best at large sizes. For all sizes the claw-rotor configuration is significantly inferior. In Part III the power densities available from axial-field and flux-switching magnetic circuit configurations are maximized, over the power range 0.25-10 kW and speed range 10 000–100000 rpm, and compared to the results of Parts I & II. For the axial-field configuration the power density is always less than that of the conventional and flux-squeezing radial-field configurations. For the flux-switching generator, which is able to withstand relatively high mechanical forces in the rotor, the power density is again inferior to the radial-field types, but the difference is less apparent for small (low power, high speed) generator sizes. From the combined results it can be concluded that the flux-squeezing and conventional radial-field magnetic circuit configurations yield designs with minimum volume over the power and speed ranges considered. © 1985, IEEE. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on electrical transport measurements at high current densities on optimally doped YBa 2Cu 3O 7-δ thin films grown on vicinal SrTiO 3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm -2) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous numerical simulations have shown that vortex breakdown starts with the formation of a steady axisymmetric bubble and that an unsteady spiralling mode then develops on top of this.We study how this spiral mode of vortex breakdown might be suppressed or promoted. We use a Lagrangian approach to identify regions of the flow which are sensitive to small open-loop steady and unsteady (harmonic) forces. We find these regions to be upstream of the vortex breakdown bubble. We investigate passive control using a small axisymmetric control ring. In this case, the steady and unsteady control forces are caused by the drag force on the control ring. We find a narrow region upstream of the bubble where the control ring will stabilise the flow and we verify this using numerical simulations. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leading edge vortices are considered to be important in generating the high lift coefficients observed in insect flight and may therefore be relevant to micro-air vehicles. A potential flow model of an impulsively started flat plate, featuring a leading edge vortex (LEV) and a trailing edge vortex (TEV) is fitted to experimental data in order to provide insight into the mechanisms that influence the convection of the LEV and to study how the LEV contributes to lift. The potential flow model fits the experimental data best with no bound circulation, which is in accordance with Kelvin's circulation theorem. The lift-to-drag ratio is well approximated by the function 'cot α' for α > 15°, which supports the tentative conclusion that shortly after an impulsive start, at post-stall angles of attack, lift is caused non-circulatory forces and by the action of the LEV as opposed to bound circulation. Copyright © 2012 by C. W. Pitt Ford.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flapping wings often feature a leading-edge vortex (LEV) that is thought to enhance the lift generated by the wing. Here the lift on a wing featuring a leading-edge vortex is considered by performing experiments on a translating flat-plate aerofoil that is accelerated from rest in a water towing tank at a fixed angle of attack of 15°. The unsteady flow is investigated with dye flow visualization, particle image velocimetry (PIV) and force measurements. Leading-and trailing-edge vortex circulation and position are calculated directly from the velocity vectors obtained using PIV. In order to determine the most appropriate value of bound circulation, a two-dimensional potential flow model is employed and flow fields are calculated for a range of values of bound circulation. In this way, the value of bound circulation is selected to give the best fit between the experimental velocity field and the potential flow field. Early in the trajectory, the value of bound circulation calculated using this potential flow method is in accordance with Kelvin's circulation theorem, but differs from the values predicted by Wagner's growth of bound circulation and the Kutta condition. Later the Kutta condition is established but the bound circulation remains small; most of the circulation is contained instead in the LEVs. The growth of wake circulation can be approximated by Wagner's circulation curve. Superimposing the non-circulatory lift, approximated from the potential flow model, and Wagner's lift curve gives a first-order approximation of the measured lift. Lift is generated by inertial effects and the slow buildup of circulation, which is contained in shed vortices rather than bound circulation. © 2013 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous numerical simulations have shown that vortex breakdown starts with the formation of a steady axisymmetric bubble and that an unsteady spiralling mode then develops on top of this. We investigate this spiral mode with a linear global stability analysis around the steady bubble and its wake. We obtain the linear direct and adjoint global modes of the linearized Navier-Stokes equations and overlap these to obtain the structural sensitivity of the spiral mode, which identifies the wavemaker region. We also identify regions of absolute instability with a local stability analysis. At moderate swirls, we find that the m=-1 azimuthal mode is the most unstable and that the wavemaker regions of the m=-1 mode lie around the bubble, which is absolutely unstable. The mode is most sensitive to feedback involving the radial and azimuthal components of momentum in the region just upstream of the bubble. To a lesser extent, the mode is also sensitive to feedback involving the axial component of momentum in regions of high shear around the bubble. At an intermediate swirl, in which the bubble and wake have similar absolute growth rates, other researchers have found that the wavemaker of the nonlinear global mode lies in the wake. We agree with their analysis but find that the regions around the bubble are more influential than the wake in determining the growth rate and frequency of the linear global mode. The results from this paper provide the first steps towards passive control strategies for spiral vortex breakdown. © 2013 Cambridge University Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide experimental evidence for a vortex migration phenomenon in YBa2Cu3O7-δ (YBCO) thin film caused by travelling magnetic wave. The experiment is carried out on a 2 in. diameter YBCO thin film with a circular-type magnetic flux pump. We found that the travelling wave helps the vortices migrate into the centre of the sample: after the zero-field cooling process, the increase of the flux density in the centre is four times larger than the amplitude of the travelling wave. The reason for this massive vortex migration is probably due to the magnetic stress variation caused by the travelling wave: the magnetic stress increases locally in the crest region while decreases locally in the trough region, which could help the vortices to move locally. A comparison shows that the magnetization by standing wave can be easily predicted by Bean's model while travelling wave causes vortex migration generally much larger than the prediction of Bean's model. It is possible that travelling magnetic wave can be an effective way to magnetize a type II superconductor in considering this unusual vortex dynamics. © 2013 AIP Publishing LLC.