979 resultados para Data portal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the variability of wind power, it is imperative to accurately and timely forecast the wind generation to enhance the flexibility and reliability of the operation and control of real-time power. Special events such as ramps, spikes are hard to predict with traditional methods using solely recently measured data. In this paper, a new Gaussian Process model with hybrid training data taken from both the local time and historic dataset is proposed and applied to make short-term predictions from 10 minutes to one hour ahead. A key idea is that the similar pattern data in history are properly selected and embedded in Gaussian Process model to make predictions. The results of the proposed algorithms are compared to those of standard Gaussian Process model and the persistence model. It is shown that the proposed method not only reduces magnitude error but also phase error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. We compared the mental health risk to unpaid caregivers bereaved of a care recipient with the risk to persons otherwise bereaved and to nonbereaved caregivers.

Methods. We linked prescription records for antidepressant and anxiolytic drugs to characteristics and life-event data of members of the Northern Ireland Longitudinal Study (n = 317 264). Using a case-control design, we fitted logistic regression models, stratified by age, to model relative likelihood of mental health problems, using the proxy measures of mental health–related prescription.

Results. Both caregivers and bereaved individuals were estimated to be at between 20% and 50% greater risk for mental health problems than noncaregivers in similar circumstances (for bereaved working-age caregivers, odds ratio = 1.41; 95% confidence interval = 1.27, 1.56). For older people, there was no evidence of additional risk to bereaved caregivers, though there was for working-age people. Older people appeared to recover more quickly from caregiver bereavement.

Conclusions. Caregivers were at risk for mental ill health while providing care and after the death of the care recipient. Targeted caregiver support needs to extend beyond the life of the care recipient.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

IMPORTANCE Systematic reviews and meta-analyses of individual participant data (IPD) aim to collect, check, and reanalyze individual-level data from all studies addressing a particular research question and are therefore considered a gold standard approach to evidence synthesis. They are likely to be used with increasing frequency as current initiatives to share clinical trial data gain momentum and may be particularly important in reviewing controversial therapeutic areas.

OBJECTIVE To develop PRISMA-IPD as a stand-alone extension to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Statement, tailored to the specific requirements of reporting systematic reviews and meta-analyses of IPD. Although developed primarily for reviews of randomized trials, many items will apply in other contexts, including reviews of diagnosis and prognosis.

DESIGN Development of PRISMA-IPD followed the EQUATOR Network framework guidance and used the existing standard PRISMA Statement as a starting point to draft additional relevant material. A web-based survey informed discussion at an international workshop that included researchers, clinicians, methodologists experienced in conducting systematic reviews and meta-analyses of IPD, and journal editors. The statement was drafted and iterative refinements were made by the project, advisory, and development groups. The PRISMA-IPD Development Group reached agreement on the PRISMA-IPD checklist and flow diagram by consensus.

FINDINGS Compared with standard PRISMA, the PRISMA-IPD checklist includes 3 new items that address (1) methods of checking the integrity of the IPD (such as pattern of randomization, data consistency, baseline imbalance, and missing data), (2) reporting any important issues that emerge, and (3) exploring variation (such as whether certain types of individual benefit more from the intervention than others). A further additional item was created by reorganization of standard PRISMA items relating to interpreting results. Wording was modified in 23 items to reflect the IPD approach.

CONCLUSIONS AND RELEVANCE PRISMA-IPD provides guidelines for reporting systematic reviews and meta-analyses of IPD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Urothelial pathogenesis is a complex process driven by an underlying network of interconnected genes. The identification of novel genomic target regions and gene targets that drive urothelial carcinogenesis is crucial in order to improve our current limited understanding of urothelial cancer (UC) on the molecular level. The inference of genome-wide gene regulatory networks (GRN) from large-scale gene expression data provides a promising approach for a detailed investigation of the underlying network structure associated to urothelial carcinogenesis.

METHODS: In our study we inferred and compared three GRNs by the application of the BC3Net inference algorithm to large-scale transitional cell carcinoma gene expression data sets from Illumina RNAseq (179 samples), Illumina Bead arrays (165 samples) and Affymetrix Oligo microarrays (188 samples). We investigated the structural and functional properties of GRNs for the identification of molecular targets associated to urothelial cancer.

RESULTS: We found that the urothelial cancer (UC) GRNs show a significant enrichment of subnetworks that are associated with known cancer hallmarks including cell cycle, immune response, signaling, differentiation and translation. Interestingly, the most prominent subnetworks of co-located genes were found on chromosome regions 5q31.3 (RNAseq), 8q24.3 (Oligo) and 1q23.3 (Bead), which all represent known genomic regions frequently deregulated or aberated in urothelial cancer and other cancer types. Furthermore, the identified hub genes of the individual GRNs, e.g., HID1/DMC1 (tumor development), RNF17/TDRD4 (cancer antigen) and CYP4A11 (angiogenesis/ metastasis) are known cancer associated markers. The GRNs were highly dataset specific on the interaction level between individual genes, but showed large similarities on the biological function level represented by subnetworks. Remarkably, the RNAseq UC GRN showed twice the proportion of significant functional subnetworks. Based on our analysis of inferential and experimental networks the Bead UC GRN showed the lowest performance compared to the RNAseq and Oligo UC GRNs.

CONCLUSION: To our knowledge, this is the first study investigating genome-scale UC GRNs. RNAseq based gene expression data is the data platform of choice for a GRN inference. Our study offers new avenues for the identification of novel putative diagnostic targets for subsequent studies in bladder tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly large amounts of data are stored in main memory of data center servers. However, DRAM-based memory is an important consumer of energy and is unlikely to scale in the future. Various byte-addressable non-volatile memory (NVM) technologies promise high density and near-zero static energy, however they suffer from increased latency and increased dynamic energy consumption.

This paper proposes to leverage a hybrid memory architecture, consisting of both DRAM and NVM, by novel, application-level data management policies that decide to place data on DRAM vs. NVM. We analyze modern column-oriented and key-value data stores and demonstrate the feasibility of application-level data management. Cycle-accurate simulation confirms that our methodology reduces the energy with least performance degradation as compared to the current state-of-the-art hardware or OS approaches. Moreover, we utilize our techniques to apportion DRAM and NVM memory sizes for these workloads.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the impact of smoking and smoking cessation on cardiovascular mortality, acute coronary events, and stroke events in people aged 60 and older, and to calculate and report risk advancement periods for cardiovascular mortality in addition to traditional epidemiological relative risk measures.

DESIGN: Individual participant meta-analysis using data from 25 cohorts participating in the CHANCES consortium. Data were harmonised, analysed separately employing Cox proportional hazard regression models, and combined by meta-analysis.

RESULTS: Overall, 503,905 participants aged 60 and older were included in this study, of whom 37,952 died from cardiovascular disease. Random effects meta-analysis of the association of smoking status with cardiovascular mortality yielded a summary hazard ratio of 2.07 (95% CI 1.82 to 2.36) for current smokers and 1.37 (1.25 to 1.49) for former smokers compared with never smokers. Corresponding summary estimates for risk advancement periods were 5.50 years (4.25 to 6.75) for current smokers and 2.16 years (1.38 to 2.39) for former smokers. The excess risk in smokers increased with cigarette consumption in a dose-response manner, and decreased continuously with time since smoking cessation in former smokers. Relative risk estimates for acute coronary events and for stroke events were somewhat lower than for cardiovascular mortality, but patterns were similar.

CONCLUSIONS: Our study corroborates and expands evidence from previous studies in showing that smoking is a strong independent risk factor of cardiovascular events and mortality even at older age, advancing cardiovascular mortality by more than five years, and demonstrating that smoking cessation in these age groups is still beneficial in reducing the excess risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we explore ways to address the issue of dataset bias in person re-identification by using data augmentation to increase the variability of the available datasets, and we introduce a novel data augmentation method for re-identification based on changing the image background. We show that use of data augmentation can improve the cross-dataset generalisation of convolutional network based re-identification systems, and that changing the image background yields further improvements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a mathematically rigorous Quality-of-Service (QoS) metric which relates the achievable quality of service metric (QoS) for a real-time analytics service to the server energy cost of offering the service. Using a new iso-QoS evaluation methodology, we scale server resources to meet QoS targets and directly rank the servers in terms of their energy-efficiency and by extension cost of ownership. Our metric and method are platform-independent and enable fair comparison of datacenter compute servers with significant architectural diversity, including micro-servers. We deploy our metric and methodology to compare three servers running financial option pricing workloads on real-life market data. We find that server ranking is sensitive to data inputs and desired QoS level and that although scale-out micro-servers can be up to two times more energy-efficient than conventional heavyweight servers for the same target QoS, they are still six times less energy efficient than high-performance computational accelerators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cloud data centres are critical business infrastructures and the fastest growing service providers. Detecting anomalies in Cloud data centre operation is vital. Given the vast complexity of the data centre system software stack, applications and workloads, anomaly detection is a challenging endeavour. Current tools for detecting anomalies often use machine learning techniques, application instance behaviours or system metrics distribu- tion, which are complex to implement in Cloud computing environments as they require training, access to application-level data and complex processing. This paper presents LADT, a lightweight anomaly detection tool for Cloud data centres that uses rigorous correlation of system metrics, implemented by an efficient corre- lation algorithm without need for training or complex infrastructure set up. LADT is based on the hypothesis that, in an anomaly-free system, metrics from data centre host nodes and virtual machines (VMs) are strongly correlated. An anomaly is detected whenever correlation drops below a threshold value. We demonstrate and evaluate LADT using a Cloud environment, where it shows that the hosting node I/O operations per second (IOPS) are strongly correlated with the aggregated virtual machine IOPS, but this correlation vanishes when an application stresses the disk, indicating a node-level anomaly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the reliable analysis and modeling of astrophysical, laser-produced, and fusion plasmas, atomic data are required for a number of parameters, including energy levels, radiative rates, and electron impact excitation rates. Such data are desired for a range of elements (H to W) and their many ions. However, measurements of atomic data, mainly for radiative and excitation rates, are not feasible for many species, and therefore, calculations are needed. For some ions (such as of C, Fe, and Kr), there is a variety of calculations available in the literature, but often, they differ significantly from one another. Therefore, there is a great demand from the user community to have data "assessed" for accuracy so that they can be confidently applied to the modeling of plasmas. In this paper we highlight the difficulties in assessing atomic data and offer some solutions for improving the accuracy of calculated results.