945 resultados para Data modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM) datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR). Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Observations of Earth from space have been made for over 40 years and have contributed to advances in many aspects of climate science. However, attempts to exploit this wealth of data are often hampered by a lack of homogeneity and continuity and by insufficient understanding of the products and their uncertainties. There is, therefore, a need to reassess and reprocess satellite datasets to maximize their usefulness for climate science. The European Space Agency has responded to this need by establishing the Climate Change Initiative (CCI). The CCI will create new climate data records for (currently) 13 essential climate variables (ECVs) and make these open and easily accessible to all. Each ECV project works closely with users to produce time series from the available satellite observations relevant to users' needs. A climate modeling users' group provides a climate system perspective and a forum to bring the data and modeling communities together. This paper presents the CCI program. It outlines its benefit and presents approaches and challenges for each ECV project, covering clouds, aerosols, ozone, greenhouse gases, sea surface temperature, ocean color, sea level, sea ice, land cover, fire, glaciers, soil moisture, and ice sheets. It also discusses how the CCI approach may contribute to defining and shaping future developments in Earth observation for climate science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seventeen simulations of the Last Glacial Maximum (LGM) climate have been performed using atmospheric general circulation models (AGCM) in the framework of the Paleoclimate Modeling Intercomparison Project (PMIP). These simulations use the boundary conditions for CO2, insolation and ice-sheets; surface temperatures (SSTs) are either (a) prescribed using CLIMAP data set (eight models) or (b) computed by coupling the AGCM with a slab ocean (nine models). The present-day (PD) tropical climate is correctly depicted by all the models, except the coarser resolution models, and the simulated geographical distribution of annual mean temperature is in good agreement with climatology. Tropical cooling at the LGM is less than at middle and high latitudes, but greatly exceeds the PD temperature variability. The LGM simulations with prescribed SSTs underestimate the observed temperature changes except over equatorial Africa where the models produce a temperature decrease consistent with the data. Our results confirm previous analyses showing that CLIMAP (1981) SSTs only produce a weak terrestrial cooling. When SSTs are computed, the models depict a cooling over the Pacific and Indian oceans in contrast with CLIMAP and most models produce cooler temperatures over land. Moreover four of the nine simulations, produce a cooling in good agreement with terrestrial data. Two of these model results over ocean are consistent with new SST reconstructions whereas two models simulate a homogeneous cooling. Finally, the LGM aridity inferred for most of the tropics from the data, is globally reproduced by the models with a strong underestimation for models using computed SSTs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Large changes in the extent of northern subtropical arid regions during the Holocene are attributed to orbitally forced variations in monsoon strength and have been implicated in the regulation of atmospheric trace gas concentrations on millenial timescales. Models that omit biogeophysical feedback, however, are unable to account for the full magnitude of African monsoon amplification and extension during the early to middle Holocene (˜9500–5000 years B.P.). A data set describing land-surface conditions 6000 years B.P. on a 1° × 1° grid across northern Africa and the Arabian Peninsula has been prepared from published maps and other sources of palaeoenvironmental data, with the primary aim of providing a realistic lower boundary condition for atmospheric general circulation model experiments similar to those performed in the Palaeoclimate Modelling Intercomparison Project. The data set includes information on the percentage of each grid cell occupied by specific vegetation types (steppe, savanna, xerophytic woods/scrub, tropical deciduous forest, and tropical montane evergreen forest), open water (lakes), and wetlands, plus information on the flow direction of major drainage channels for use in large-scale palaeohydrological modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3  s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Weather Research and Forecasting model was applied to analyze variations in the planetary boundary layer (PBL) structure over Southeast England including central and suburban London. The parameterizations and predictive skills of two nonlocal mixing PBL schemes, YSU and ACM2, and two local mixing PBL schemes, MYJ and MYNN2, were evaluated over a variety of stability conditions, with model predictions at a 3 km grid spacing. The PBL height predictions, which are critical for scaling turbulence and diffusion in meteorological and air quality models, show significant intra-scheme variance (> 20%), and the reasons are presented. ACM2 diagnoses the PBL height thermodynamically using the bulk Richardson number method, which leads to a good agreement with the lidar data for both unstable and stable conditions. The modeled vertical profiles in the PBL, such as wind speed, turbulent kinetic energy (TKE), and heat flux, exhibit large spreads across the PBL schemes. The TKE predicted by MYJ were found to be too small and show much less diurnal variation as compared with observations over London. MYNN2 produces better TKE predictions at low levels than MYJ, but its turbulent length scale increases with height in the upper part of the strongly convective PBL, where it should decrease. The local PBL schemes considerably underestimate the entrainment heat fluxes for convective cases. The nonlocal PBL schemes exhibit stronger mixing in the mean wind fields under convective conditions than the local PBL schemes and agree better with large-eddy simulation (LES) studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We apply a numerical model of time-dependent ionospheric convection to two directly driven reconnection pulses during a 15-min interval of southward IMF on 26 November 2000. The model requires an input magnetopause reconnection rate variation, which is here derived from the observed variation in the upstream IMF clock angle, q. The reconnection rate is mapped to an ionospheric merging gap, the MLT extent of which is inferred from the Doppler-shifted Lyman-a emission on newly opened field lines, as observed by the FUV instrument on the IMAGE spacecraft. The model is used to reproduce a variety of features observed during this event: SuperDARN observations of the ionospheric convection pattern and transpolar voltage; FUV observations of the growth of patches of newly opened flux; FUVand in situ observations of the location of the Open-Closed field line Boundary (OCB) and a cusp ion step. We adopt a clock angle dependence of the magnetopause reconnection electric field, mapped to the ionosphere, of the form Enosin4(q/2) and estimate the peak value, Eno, by matching observed and modeled variations of both the latitude, LOCB, of the dayside OCB (as inferred from the equatorward edge of cusp proton emissions seen by FUV) and the transpolar voltage FPC (as derived using the mapped potential technique from SuperDARN HF radar data). This analysis also yields the time constant tOCB with which the open-closed boundary relaxes back toward its equilibrium configuration. For the case studied here, we find tOCB = 9.7 ± 1.3 min, consistent with previous inferences from the observed response of ionospheric flow to southward turnings of the IMF. The analysis confirms quantitatively the concepts of ionospheric flow excitation on which the model is based and explains some otherwise anomalous features of the cusp precipitation morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Land cover plays a key role in global to regional monitoring and modeling because it affects and is being affected by climate change and thus became one of the essential variables for climate change studies. National and international organizations require timely and accurate land cover information for reporting and management actions. The North American Land Change Monitoring System (NALCMS) is an international cooperation of organizations and entities of Canada, the United States, and Mexico to map land cover change of North America's changing environment. This paper presents the methodology to derive the land cover map of Mexico for the year 2005 which was integrated in the NALCMS continental map. Based on a time series of 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) data and an extensive sample data base the complexity of the Mexican landscape required a specific approach to reflect land cover heterogeneity. To estimate the proportion of each land cover class for every pixel several decision tree classifications were combined to obtain class membership maps which were finally converted to a discrete map accompanied by a confidence estimate. The map yielded an overall accuracy of 82.5% (Kappa of 0.79) for pixels with at least 50% map confidence (71.3% of the data). An additional assessment with 780 randomly stratified samples and primary and alternative calls in the reference data to account for ambiguity indicated 83.4% overall accuracy (Kappa of 0.80). A high agreement of 83.6% for all pixels and 92.6% for pixels with a map confidence of more than 50% was found for the comparison between the land cover maps of 2005 and 2006. Further wall-to-wall comparisons to related land cover maps resulted in 56.6% agreement with the MODIS land cover product and a congruence of 49.5 with Globcover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Highly heterogeneous mountain snow distributions strongly affect soil moisture patterns; local ecology; and, ultimately, the timing, magnitude, and chemistry of stream runoff. Capturing these vital heterogeneities in a physically based distributed snow model requires appropriately scaled model structures. This work looks at how model scale—particularly the resolutions at which the forcing processes are represented—affects simulated snow distributions and melt. The research area is in the Reynolds Creek Experimental Watershed in southwestern Idaho. In this region, where there is a negative correlation between snow accumulation and melt rates, overall scale degradation pushed simulated melt to earlier in the season. The processes mainly responsible for snow distribution heterogeneity in this region—wind speed, wind-affected snow accumulations, thermal radiation, and solar radiation—were also independently rescaled to test process-specific spatiotemporal sensitivities. It was found that in order to accurately simulate snowmelt in this catchment, the snow cover needed to be resolved to 100 m. Wind and wind-affected precipitation—the primary influence on snow distribution—required similar resolution. Thermal radiation scaled with the vegetation structure (~100 m), while solar radiation was adequately modeled with 100–250-m resolution. Spatiotemporal sensitivities to model scale were found that allowed for further reductions in computational costs through the winter months with limited losses in accuracy. It was also shown that these modeling-based scale breaks could be associated with physiographic and vegetation structures to aid a priori modeling decisions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate estimates of how soil water stress affects plant transpiration are crucial for reliable land surface model (LSM) predictions. Current LSMs generally use a water stress factor, β, dependent on soil moisture content, θ, that ranges linearly between β = 1 for unstressed vegetation and β = 0 when wilting point is reached. This paper explores the feasibility of replacing the current approach with equations that use soil water potential as their independent variable, or with a set of equations that involve hydraulic and chemical signaling, thereby ensuring feedbacks between the entire soil–root–xylem–leaf system. A comparison with the original linear θ-based water stress parameterization, and with its improved curvi-linear version, was conducted. Assessment of model suitability was focused on their ability to simulate the correct (as derived from experimental data) curve shape of relative transpiration versus fraction of transpirable soil water. We used model sensitivity analyses under progressive soil drying conditions, employing two commonly used approaches to calculate water retention and hydraulic conductivity curves. Furthermore, for each of these hydraulic parameterizations we used two different parameter sets, for 3 soil texture types; a total of 12 soil hydraulic permutations. Results showed that the resulting transpiration reduction functions (TRFs) varied considerably among the models. The fact that soil hydraulic conductivity played a major role in the model that involved hydraulic and chemical signaling led to unrealistic values of β, and hence TRF, for many soil hydraulic parameter sets. However, this model is much better equipped to simulate the behavior of different plant species. Based on these findings, we only recommend implementation of this approach into LSMs if great care with choice of soil hydraulic parameters is taken

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the assembly of tumor necrosis factor receptor 1 (TNF-R1) prior to ligand activation and its ligand-induced reorganization at the cell membrane. We apply single-molecule localization microscopy to obtain quantitative information on receptor cluster sizes and copy numbers. Our data suggest a dimeric pre-assembly of TNF-R1, as well as receptor reorganization toward higher oligomeric states with stable populations comprising three to six TNF-R1. Our experimental results directly serve as input parameters for computational modeling of the ligand-receptor interaction. Simulations corroborate the experimental finding of higher-order oligomeric states. This work is a first demonstration how quantitative, super-resolution and advanced microscopy can be used for systems biology approaches at the single-molecule and single-cell level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The East China Sea is a hot area for typhoon waves to occur. A wave spectra assimilation model has been developed to predict the typhoon wave more accurately and operationally. This is the first time where wave data from Taiwan have been used to predict typhoon wave along the mainland China coast. The two-dimensional spectra observed in Taiwan northeast coast modify the wave field output by SWAN model through the technology of optimal interpolation (OI) scheme. The wind field correction is not involved as it contributes less than a quarter of the correction achieved by assimilation of waves. The initialization issue for assimilation is discussed. A linear evolution law for noise in the wave field is derived from the SWAN governing equations. A two-dimensional digital low-pass filter is used to obtain the initialized wave fields. The data assimilation model is optimized during the typhoon Sinlaku. During typhoons Krosa and Morakot, data assimilation significantly improves the low frequency wave energy and wave propagation direction in Taiwan coast. For the far-field region, the assimilation model shows an expected ability of improving typhoon wave forecast as well, as data assimilation enhances the low frequency wave energy. The proportion of positive assimilation indexes is over 81% for all the periods of comparison. The paper also finds that the impact of data assimilation on the far-field region depends on the state of the typhoon developing and the swell propagation direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.