906 resultados para DYNAMICS SIMULATIONS
Resumo:
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH(3)). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH(3), increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH(3.) We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011)
Resumo:
Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.
Resumo:
The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.
Resumo:
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TR beta) vs. TR alpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TR beta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331 beta) in the TR beta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3`-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TR beta selectivity. TR x-ray structures reveal better fit of ligand with the TR alpha LBC. The TR beta LBC, however, expands relative to TR alpha in the presence of Triac (549 angstrom(3) vs. 461 angstrom(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TR beta and permits greater flexibility of the Triac carboxylate group in TR beta than in TR alpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TR beta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.
Resumo:
The development of anticancer therapeutics that target Cdc25 phosphatases is now an active area of research. A complete understanding of the Cdc25 catalytic mechanism would certainly allow a more rational inhibitor design. However, the identity of the catalytic acid used by Cdc25 has been debated and not established unambiguously. Results of molecular dynamics simulations with a calibrated hybrid potential for the first reaction step catalyzed by Cdc25B in complex with its natural substrate, the Cdk2-pTpY/CycA protein complex, are presented here. The calculated reaction free-energy profiles are in very good agreement with experimental measurements and are used to discern between different proposals for the general acid. In addition, the simulations give useful insight on interactions that can be explored for the design of inhibitors specific to Cdc25.
Resumo:
Cdc25 phosphatases involved in cell cycle checkpoints are now active targets for the development of anti-cancer therapies. Rational drug design would certainly benefit from detailed structural information for Cdc25s. However, only apo- or sulfate-bound crystal structures of the Cdc25 catalytic domain have been described so far. Together with previously available crystalographic data, results from molecular dynamics simulations, bioinformatic analysis, and computer-generated conformational ensembles shown here indicate that the last 30-40 residues in the C-terminus of Cdc25B are partially unfolded or disordered in solution. The effect of C-terminal flexibility upon binding of two potent small molecule inhibitors to Cdc25B is then analyzed by using three structural models with variable levels of flexibility, including an equilibrium distributed ensemble of Cdc25B backbone conformations. The three Cdc25B structural models are used in combination with flexible docking, clustering, and calculation of binding free energies by the linear interaction energy approximation to construct and validate Cdc25B-inhibitor complexes. Two binding sites are identified on top and beside the Cdc25B active site. The diversity of interaction modes found increases with receptor flexibility. Backbone flexibility allows the formation of transient cavities or compact hydrophobic units on the surface of the stable, folded protein core that are unexposed or unavailable for ligand binding in rigid and densely packed crystal structures. The present results may help to speculate on the mechanisms of small molecule complexation to partially unfolded or locally disordered proteins.
Resumo:
Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Tuberculosis (TB) is one of the most common infectious diseases known to man and responsible for millions of human deaths in the world. The increasing incidence of TB in developing countries, the proliferation of multidrug resistant strains, and the absence of resources for treatment have highlighted the need of developing new drugs against TB. The shikimate pathway leads to the biosynthesis of chorismate, a precursor of aromatic amino acids. This pathway is absent from mammals and shown to be essential for the survival of Mycobacterium tuberculosis, the causative agent of TB. Accordingly, enzymes of aromatic amino acid biosynthesis pathway represent promising targets for structure-based drug design. The first reaction in phenylalanine biosynthesis involves the conversion of chorismate to prephenate, catalyzed by chorismate mutase. The second reaction is catalyzed by prephenate dehydratase (PDT) and involves decarboxylation and dehydratation of prephenate to form phenylpyruvate, the precursor of phenylalanine. Here, we describe utilization of different techniques to infer the structure of M. tuberculosis PDT (MtbPDT) in solution. Small angle X-ray scattering and ultracentrifugation analysis showed that the protein oligomeric state is a tetramer and MtbPDT is a flat disk protein. Bioinformatics tools were used to infer the structure of MtbPDT A molecular model for MtbPDT is presented and molecular dynamics simulations indicate that MtbPDT i.s stable. Experimental and molecular modeling results were in agreement and provide evidence for a tetrameric state of MtbPDT in solution.
Resumo:
Alavancagem em hedge funds tem preocupado investidores e estudiosos nos últimos anos. Exemplos recentes de estratégias desse tipo se mostraram vantajosos em períodos de pouca incerteza na economia, porém desastrosos em épocas de crise. No campo das finanças quantitativas, tem-se procurado encontrar o nível de alavancagem que otimize o retorno de um investimento dado o risco que se corre. Na literatura, os estudos têm se mostrado mais qualitativos do que quantitativos e pouco se tem usado de métodos computacionais para encontrar uma solução. Uma forma de avaliar se alguma estratégia de alavancagem aufere ganhos superiores do que outra é definir uma função objetivo que relacione risco e retorno para cada estratégia, encontrar as restrições do problema e resolvê-lo numericamente por meio de simulações de Monte Carlo. A presente dissertação adotou esta abordagem para tratar o investimento em uma estratégia long-short em um fundo de investimento de ações em diferentes cenários: diferentes formas de alavancagem, dinâmicas de preço das ações e níveis de correlação entre esses preços. Foram feitas simulações da dinâmica do capital investido em função das mudanças dos preços das ações ao longo do tempo. Considerou-se alguns critérios de garantia de crédito, assim como a possibilidade de compra e venda de ações durante o período de investimento e o perfil de risco do investidor. Finalmente, estudou-se a distribuição do retorno do investimento para diferentes níveis de alavancagem e foi possível quantificar qual desses níveis é mais vantajoso para a estratégia de investimento dadas as restrições de risco.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Among the new drugs launched into the market since 1980, up to 30% of them belong to the class of natural products or they have semisynthetic origin. Between 40-70% of the new chemical entities (or lead compounds) possess poor water solubility, which may impair their commercial use. An alternative for administration of poorly water-soluble drugs is their vehiculation into drug delivery systems like micelles, microemulsions, nanoparticles, liposomes, and cyclodextrin systems. In this work, microemulsion-based drug delivery systems were obtained using pharmaceutically acceptable components: a mixture Tween 80 and Span 20 in ratio 3:1 as surfactant, isopropyl mirystate or oleic acid as oil, bidistilled water, and ethanol, in some formulations, as cosurfactants. Self-Microemulsifying Drug Delivery Systems (SMEDDS) were also obtained using propylene glycol or sorbitol as cosurfactant. All formulations were characterized for rheological behavior, droplet size and electrical conductivity. The bioactive natural product trans-dehydrocrotonin, as well some extracts and fractions from Croton cajucara Benth (Euphorbiaceae), Anacardium occidentale L. (Anacardiaceae) e Phyllanthus amarus Schum. & Thonn. (Euphorbiaceae) specimens, were satisfactorily solubilized into microemulsions formulations. Meanwhile, two other natural products from Croton cajucara, trans-crotonin and acetyl aleuritolic acid, showed poor solubility in these formulations. The evaluation of the antioxidant capacity, by DPPH method, of plant extracts loaded into microemulsions evidenced the antioxidant activity of Phyllanthus amarus and Anacardium occidentale extracts. For Phyllanthus amarus extract, the use of microemulsions duplicated its antioxidant efficiency. A hydroalcoholic extract from Croton cajucara incorporated into a SMEDDS formulation showed bacteriostatic activity against colonies of Bacillus cereus and Escherichia coli bacteria. Additionally, Molecular Dynamics simulations were performed using micellar systems, for drug delivery systems, containing sugar-based surfactants, N-dodecylamino-1-deoxylactitol and N-dodecyl-D-lactosylamine. The computational simulations indicated that micellization process for N-dodecylamino-1- deoxylactitol is more favorable than N-dodecyl-D-lactosylamine system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The 1.7 angstrom resolution crystal structure of recombinant family G/11 beta-1,4-xylanase (rXynA) from Bacillus subtilis 1A1 shows a jellyroll fold in which two curved P-sheets form the active-site and substrate-binding cleft. The onset of thermal denaturation of rXynA occurs at 328 K, in excellent agreement with the optimum catalytic temperature. Molecular dynamics simulations at temperatures of 298-328 K demonstrate that below the optimum temperature the thumb loop and palm domain adopt a closed conformation. However, at 328 K these two domains separate facilitating substrate access to the active-site pocket, thereby accounting for the optimum catalytic temperature of the rXynA. (c) 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Lys49 phospholipase A(2) homologues are highly myotoxic and cause extensive tissue damage but do not display hydrolytic activity towards natural phospholipids. The binding of heparin, heparin derivatives and polyanionic compounds such as suramin result in partial inhibition (up to 60%) of the myotoxic effects due to a change in the overall charge of the interfacial surface. In vivo experiments demonstrate that polyethylene glycol inhibits more than 90% of the myotoxic effects without exhibiting secondary toxic effects. The crystal structure of bothropstoxin-I complexed with polyethylene glycol reveals that this inhibition is due to steric hindrance of the access to the PLA(2)-active site-like region. These two inhibitory pathways indicate the roles of the overall surface charge and free accessibility to the PLA2-active site-like region in the functioning of Lys49 phospholipases A(2) homologues. Molecular dynamics simulations, small angle X-ray scattering and structural analysis indicate that the oligomeric states both in solution and in the crystalline states of Lys49 phospholipases A2 are principally mediated by hydrophobic contacts formed between the interfacial surfaces. These results provide the framework for the potential application of both clinically approved drugs for the treatment of Viperidae snakebites. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)