796 resultados para DOPED TIO2 NANOTUBES
Resumo:
We have investigated the fragmentation of collective modes in doped 4He drops in the framework of a finite-range density-functional theory, as well as the delocalization of the impurity inside the cluster. Our results indicate that the impurity is gradually delocalized inside the drop as the size of the latter increases. As an example, results are shown in the case of Xe-4HeN systems up to N=112.
Resumo:
The advent of high optical quality transparent nano—structured glasses, the so-called transparent glass ceramics or vitroceramics disclosed the possibility of producing nano-sized photonic devices based on rare-earth doped up—converters. Transparent glass ceramics have been investigated as hosts for lanthanide ions envisioning the production of materials that are easy to shape and with high performance for photonic applications. Rare earth doped glasses have been extensively studied due to their potential applications in optical devices such as solid state lasers and optical fibers. Various photothermal and optical techniques have been successfully applied for the thermal and optical characterization of these rare earth doped materials. In the present thesis, the effective thermal parameters like thermal diffusivity and thermal effusivity of complex materials for various applications have been investigated using photothermal methods along with their optical characterization utilising the common optical absorption as well as fluorescence spectroscopic techniques. These sensitive optical procedures are also essential for exploiting these materials for further photonic applications.
Resumo:
The present study is mainly concéntrated on the visible fluorescence of Ho3+ ,nd 3+ and Er 3+rare earths in alkaline earth fluoride hosts(caF2,srF2,BaF2) using a nitrogen laser excitation. A nitrogen laser was fabricated and its parametric studies were first carried out.
Resumo:
The character of the electronic ground state of La0.5Ca0.5MnO3 has been addressed with quantum chemical calculations on large embedded clusters. We find a charge ordered state for the crystal structure reported by Radaelli et al. [Phys. Rev. B 55, 3015 (1997)] and Zener polaron formation in the crystal structure with equivalent Mn sites proposed by Daoud-Aladine et al. [Phys. Rev. Lett. 89, 097205 (2002)]. Important O to Mn charge transfer effects are observed for the Zener polaron.
Resumo:
The observation of coherent tunnelling in Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ was a crucial discovery in the realm of the Jahn-Teller (JT) effect. The main reasons favoring this dynamic behavior are now clarified through ab initio calculations on Cu2+ - and Ag2+ -doped cubic oxides. Small JT distortions and an unexpected low anharmonicity of the eg JT mode are behind energy barriers smaller than 25 cm-1 derived through CASPT2 calculations for Cu2+ - and Ag2+ -doped MgO and CaO:Cu2+ . The low anharmonicity is shown to come from a strong vibrational coupling of MO610- units (M=Cu,Ag) to the host lattice. The average distance between the d9 impurity and ligands is found to vary significantly on passing from MgO to SrO following to a good extent the lattice parameter.
Resumo:
Fluorescence is a powerful tool in biological research, the relevance of which relies greatly on the availability of sensitive and selective fluorescent probes. Nanometer sized fluorescent semiconductor materials have attracted considerable attention in recent years due to the high luminescence intensity, low photobleaching, large Stokes’ shift and high photochemical stability. The optical and spectroscopic features of nanoparticles make them very convincing alternatives to traditional fluorophores in a range of applications. Efficient surface capping agents make these nanocrystals bio-compatible. They can provide a novel platform on which many biomolecules such as DNA, RNA and proteins can be covalently linked. In the second phase of the present work, bio-compatible, fluorescent, manganese doped ZnS (ZnS:Mn) nanocrystals suitable for bioimaging applications have been developed and their cytocompatibility has been assessed. Functionalization of ZnS:Mn nanocrystals by safe materials results in considerable reduction of toxicity and allows conjugation with specific biomolecules. The highly fluorescent, bio-compatible and water- dispersible ZnS:Mn nanocrystals are found to be ideal fluorescent probes for biological labeling
Resumo:
Màster en Nanociència i Nanotecnologia
Recording multiple holographic gratings in silver-doped photopolymer using peristrophic multiplexing
Resumo:
Plane-wave transmission gratings were stored in the same location of silver- doped photopolymer ¯lm using peristrophic multiplexing techniques. Constant and vari- able exposure scheduling methods were adopted for storing gratings in the ¯lm using He{Ne laser (632.8 nm). The role of recording geometry on the dynamic range of the ma- terial was studied by comparing the results obtained from both techniques. Peristrophic multiplexing with rotation of the ¯lm in a plane normal to the bisector of the incident beams resulted in better homogenization of di®raction e±ciencies and larger M/# value.
Resumo:
Polyaniline is chemically synthesised and doped with camphor sulphonic acid. FTIR studies carried out on these samples indicate that the aromatic rings are retained after polymerisation. The percentage of crystallinity for polyaniline doped with camphor sulphonic acid has been estimated from the X-ray diffraction studies and is around 56% with respect to polyaniline emeraldine base. The change in dielectric permittivity with respect to temperature and frequency is explained on the basis of interfacial polarisation. AC conductivity is evaluated from the observed dielectric permittivity. The values of AC and DC conductivity and activation energy are calculated. The activation energy values suggested that the hopping conduction is the prominent conduction mechanism in this system.
Resumo:
Cobalt nanotubes (CoNTs) with very high longitudinal coercivity were prepared by electrodeposition of cobalt acetate for the first time by using anodized alumina (AAO) template. They were then characterized with X-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Formation of a highly ordered hexagonal cobalt phase is observed. Room temperature SQUID (superconducting quantum interference device) magnetometer measurements indicate that the easy axis of magnetization is parallel to the nanotube axis. These CoNTs exhibit very high longitudinal coercivity of ∼820 Oe. A very high intertubular interaction resulting from magnetostatic dipolar interaction between nanotubes is observed. Thick-walled nanotubes were also fabricated by using cobalt acetate tetrahydrate precursors. A plausible mechanism for the formation of CoNTs based on mobility assisted growth is proposed. The role of the hydration layer and the mobility of metal ions are elucidated in the case of the growth mechanism of one-dimensional geometry
Resumo:
Optimum conditions and experimental details for the formation of v-Fe203 from goethite have been worked out. In another method, a cheap complexing medium of starch was employed for precipitating acicular ferrous oxalate, which on decomposition in nitrogen and subsequent oxidation yielded acicular y-Fe203. On the basis of thermal decomposition in dry and moist nitrogen, DTA, XRD, GC and thermodynamic arguments, the mechanism of decomposition was elucidated. New materials obtained by doping ~'-Fe203 with 1-16 atomic percent magnesium, cobalt, nickel and copper, were synthesised and characterized