936 resultados para DNA-Directed RNA Polymerases


Relevância:

30.00% 30.00%

Publicador:

Resumo:

木质素是一类酚类次生代谢产物,在植物体内行使重要的生理功能,但它却是形成造纸污染的主要来源。利用基因工程手段,在分子水平调节木质素的生物合成,降低木质素的含量或改变组分以培育适合造纸的植物原料树种具有较大的应用价值和环保效益。本研究利用反义RNA技术,主要围绕木质素合成三种相关酶咖啡酸-O-甲基转移酶(COMT)、咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)、4-香豆酸:辅酶A连接酶(4CL)的基因对植物木质素生物合成途径调节的研究,取得如下进展: 1.农杆菌介导法将COMT和CCoAOMT基因的单价和双价的反义表达载体导入烟草,比较了两个甲基化酶的功能。PCR-Southern和Northern点杂交结果表明反义基因已整合到烟草基因组DNA上,并在转录水平表达。两种反义基因对木质素生物合成调节的效果显示,CCoAOMT能更有效地调节木质素生物总量的合成,COMT仅特异调节S木质素的合成。表达反义CCoAOMT基因的转基因毛白杨,内源CCoAOMT基因的表达在转录和蛋白水平均受到抑制,最终引起转基因植株木质素含量普遍降低,最多降低达26.20%,筛选出木质素含量下降10%以上的转基因毛白杨株系8个,为源头治理造纸废水污染奠定了基础。 2. 对克隆的4CL基因进行了表达特性分析, RT-PCR分析表明,分离的毛白杨4CL基因主要在木质部丰富表达,叶中表达量较少,树皮中不表达。在毛白杨的一个生长季,该基因表达显示明显的双锋特征,该表达模式与木材早材和晚材的发育时期相吻合,表明分离的毛白杨4CL基因与木质素的生物合成密切相关。农杆菌介导法将反义4CL基因导入烟草和毛白杨,利用分子生物学检测手段对转化植株进行筛选,获得批量转基因植株。Klason木质素含量测定分析表明,抑制内源4CL基因表达,能有效降低转基因植物中的木质素含量,且不影响植株正常生长和发育以及碳水化合物的合成。转基因毛白杨的茎杆上一些区域呈红棕色,颜色的深度与转基因毛白杨木质素含量的下降幅度呈一定的正相关性,颜色变化可作为转基因植株筛选的一个辅助指标。现已获得木质素含量下降10%以上的转基因株系3个,最多下降达41.73%,可供中试与制浆实验,为培育低木质素环保型毛白杨提供理论与实践依据。 3.为了优化现有的表达框架,使目的基因更有效地调节木质素的生物合成,应用PCR技术从毛白杨基因组中分离得到C4H(肉桂酸4—羟基化酶)基因启动子片段(GenBank注册号:AY351673)。GUS荧光活性分析和组织化学染色显示,该启动子在一些木质化的组织和器官中特异表达,随着组织成熟度和木质化程度的增加,表达活性逐渐增强,并且该启动子受伤诱导。反义CCoAOMT基因在C4H启动子的调控下,会引起转基因烟草木质素均有不同程度的减少,但不影响碳向碳水化合物的转换合成,对植物的生长发育也无明显负效应。这些结果证明了从毛白杨中分离的C4H 启动子可以应用于造纸原料树种材性改良的遗传工程操作。 4.首次从水稻中华10号(Oryza sativa L. ssp. japonica)分离了CCoAOMT基因家族的三个成员,对其基因结构及表达特性的分析表明,该基因家族的三个成员与水稻的木质化进程关系密切,研究结果有助于了解单子叶植物中的甲基化途径发生机制,为高产水稻抗倒伏和茎杆饲料作物的遗传改良奠定了基础。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Partial sequences of cytochrome b (Cyt b) and 16S ribosomal RNA (16S rRNA) mitochondrial genes were used for species identification and estimating phylogenetic relationship among three commercially important Ompok species viz. O. Pabda, O. pabo and O. bimaculatus. The sequence analysis of Cyt b (1118bp) and 16S rRNA (569 & 570bp) genes revealed that O. pabda, O. pabo & 0. bimaculatus were genetically distinct species and they exhibited identical phylogenetic relationship. The present study discussed usefulness of mtDNA genes (Cyt b & 16S rRNA) in resolving taxonomic ambiguity and estimating phylogenetics relationship.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methylation has two essential roles in plants and animals - defending the genome against transposons and regulating gene expression. Recent experiments in Arabidopsis thaliana have begun to address crucial questions about how DNA methylation is established and maintained. One cardinal insight has been the discovery that DNA methylation can be guided by small RNAs produced through RNA-interference pathways. Plants and mammals use a similar suite of DNA methyltransferases to propagate DNA methylation, but plants have also developed a glycosylase-based mechanism for removing DNA methylation, and there are hints that similar processes function in other organisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ARGONAUTE4 (AGO4) and RNA polymerase IV (Pol IV) are required for DNA methylation guided by 24 nucleotide small interfering RNAs (siRNAs) in Arabidopsis thaliana. Here we show that AGO4 localizes to nucleolus-associated bodies along with the Pol IV subunit NRPD1b; the small nuclear RNA (snRNA) binding protein SmD3; and two markers of Cajal bodies, trimethylguanosine-capped snRNAs and the U2 snRNA binding protein U2B''. AGO4 interacts with the C-terminal domain of NRPD1b, and AGO4 protein stability depends on upstream factors that synthesize siRNAs. AGO4 is also found, along with the DNA methyltransferase DRM2, throughout the nucleus at presumed DNA methylation target sites. Cajal bodies are conserved sites for the maturation of ribonucleoprotein complexes. Our results suggest a function for Cajal bodies as a center for the assembly of an AGO4/NRPD1b/siRNA complex, facilitating its function in RNA-directed gene silencing at target loci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DNA methylation directed by 24-nucleotide small RNAs involves the small RNA-binding protein ARGONAUTE4 (AGO4), and it was previously shown that AGO4 localizes to nucleolus-adjacent Cajal bodies, sites of snRNP complex maturation. Here we demonstrate that AGO4 also localizes to a second class of nuclear bodies, called AB-bodies, which are found immediately adjacent to condensed 45S ribosomal DNA (rDNA) sequences. AB-bodies also contain other proteins involved in RNA-directed DNA methylation including NRPD1b (a subunit of the RNA Polymerase IV complex, RNA PolIV), NRPD2 (a second subunit of this complex), and the DNA methyltransferase DRM2. These two classes of AGO4 bodies are structurally independent--disruption of one class does not affect the other--suggesting a dynamic regulation of AGO4 within two distinct nuclear compartments in Arabidopsis. Abolishing Cajal body formation in a coilin mutant reduced overall AGO4 protein levels, and coilin dicer-like3 double mutants showed a small decrease in DNA methylation beyond that seen in dicer-like3 single mutants, suggesting that Cajal bodies are required for a fully functioning DNA methylation system in Arabidopsis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants use siRNAs to target cytosine DNA methylation to both symmetrical CG and nonsymmetrical (CHG and CHH) sequence contexts. DNA methylation and siRNA clusters most frequently overlap with transposons in the Arabidopsis thaliana genome. However, a significant number of protein-coding genes also show promoter DNA methylation, and this can be used to silence their expression. Loss of the majority of non-CG DNA methylation in drm1 drm2 cmt3 triple mutants leads to developmental phenotypes. We identified the gene responsible for these phenotypes as SUPPRESSOR OF drm1 drm2 cmt3 (SDC), which encodes an F-box protein and possesses seven promoter tandem repeats. The SDC repeats show a unique silencing requirement for non-CG DNA methylation directed redundantly by histone methylation and siRNAs, and display spreading of siRNAs and methylation beyond the repeated region. In addition to revealing the complexity of DNA methylation control in A. thaliana, SDC has important implications for how plant genomes utilize gene silencing to repress endogenous genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytosine DNA methylation protects eukaryotic genomes by silencing transposons and harmful DNAs, but also regulates gene expression during normal development. Loss of CG methylation in the Arabidopsis thaliana met1 and ddm1 mutants causes varied and stochastic developmental defects that are often inherited independently of the original met1 or ddm1 mutation. Loss of non-CG methylation in plants with combined mutations in the DRM and CMT3 genes also causes a suite of developmental defects. We show here that the pleiotropic developmental defects of drm1 drm2 cmt3 triple mutant plants are fully recessive, and unlike phenotypes caused by met1 and ddm1, are not inherited independently of the drm and cmt3 mutations. Developmental phenotypes are also reversed when drm1 drm2 cmt3 plants are transformed with DRM2 or CMT3, implying that non-CG DNA methylation is efficiently re-established by sequence-specific signals. We provide evidence that these signals include RNA silencing though the 24-nucleotide short interfering RNA (siRNA) pathway as well as histone H3K9 methylation, both of which converge on the putative chromatin-remodeling protein DRD1. These signals act in at least three partially intersecting pathways that control the locus-specific patterning of non-CG methylation by the DRM2 and CMT3 methyltransferases. Our results suggest that non-CG DNA methylation that is inherited via a network of persistent targeting signals has been co-opted to regulate developmentally important genes. © 2006 Chan et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

马来熊在 IUCN 红皮书中被列为受胁动物, 其保护受到广泛的关注. 该文研究4只马来熊的线粒体 DNA 序列, 其中1只来自云南, 其余3只产地不详, 但来自不同的搜集渠道. 对于每个个体, 作者测定了 397bp 的细胞色素b基因、346bp 的12S rRNA基因、98bp 的 tRNA 基因和333bp 的D环区序列, 共计1174bp. 经与黑犀牛序列比较, 发现 RNA 基因的空间结构对基因的进化有显著影响, 环区的进化明显快于茎区的. 对于细胞色素b基因、12S rRNA基因和 tRNA 基因, 在马来熊个体间未发现序列变异. 这一结果提示, 马来熊群体的遗传变异程度低. 在D环区, 有13和1个位点分别出现转换和颠换. 根据D环区序列, 作者采用简约法确定了马来熊群体间的进化关系. 作者的结果表明, 线粒体 DNA 的D环区是研究马来熊群体遗传结构十分有效的遗传结构十分有效的遗传标记。

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the relationships of Asian bufonids using partial sequences of mitochondrial DNA genes. Twenty-six samples representing 14 species of Bufo from China and Vietnam and 2 species of Torrentophryne from China were examined. Three samples of Bufo viridis from Armenia and Georgia were also sequenced to make a comparison to its sibling tetraploid species B. danatensis. Bufo americanus, from Canada, was used as the outgroup. Sequences from the 12S ribosomal RNA, 16S ribosomal RNA, cytochrome b, and the control region were analyzed using parsimony. East Asian bufonids were grouped into two major clades. One clade included B. andrewsi, B. bankorensis, B. gargarizans, B. tibetanus, B. tuberculatus, its sister clade B. cryptotympanicus, and the 2 species of Torrentophryne. The second clade consisted of B. galeatus, B. himalayanus, B. melanostictus, and a new species from Vietnam. The placement of three taxa (B. raddei B. viridis, and its sister species, B. danatensis) was problematic. The genus Torrentophryne should be synonymized with Bufo to remove paraphyly. Because B. raddei does not belong to the clade that includes B. viridis and B. danatensis, it was removed from the viridis species group. The species status of B bankorensis from Taiwan is evaluated. (C) 2000 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meiosis is a specialized eukaryotic cell division that generates haploid gametes required for sexual reproduction. During meiosis, homologous chromosomes pair and undergo reciprocal genetic exchange, termed crossover (CO). Meiotic CO frequency varies along the physical length of chromosomes and is determined by hierarchical mechanisms, including epigenetic organization, for example methylation of the DNA and histones. Here we investigate the role of DNA methylation in determining patterns of CO frequency along Arabidopsis thaliana chromosomes. In A. thaliana the pericentromeric regions are repetitive, densely DNA methylated, and suppressed for both RNA polymerase-II transcription and CO frequency. DNA hypomethylated methyltransferase1 (met1) mutants show transcriptional reactivation of repetitive sequences in the pericentromeres, which we demonstrate is coupled to extensive remodeling of CO frequency. We observe elevated centromere-proximal COs in met1, coincident with pericentromeric decreases and distal increases. Importantly, total numbers of CO events are similar between wild type and met1, suggesting a role for interference and homeostasis in CO remodeling. To understand recombination distributions at a finer scale we generated CO frequency maps close to the telomere of chromosome 3 in wild type and demonstrate an elevated recombination topology in met1. Using a pollen-typing strategy we have identified an intergenic nucleosome-free CO hotspot 3a, and we demonstrate that it undergoes increased recombination activity in met1. We hypothesize that modulation of 3a activity is caused by CO remodeling driven by elevated centromeric COs. These data demonstrate how regional epigenetic organization can pattern recombination frequency along eukaryotic chromosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

尽管以前对眼虫进行过大量的形态发育研究和基于核糖体RNA基因的系统发育分析,但对于株系之间的关系仍然知之甚少.因其形态特征有限并且易变,很难鉴定眼虫的相似种和同种内不同的株.作者利用微卫星DNA指纹图谱,在七株眼虫中扩增了七个微卫星DNA位点,成功扩增的六个微卫星引物都得到了四到八个条带.从微卫星DNA指纹图谱计算得到的相似性系数范围从0.000到0.957.根据相似性系数得到的树状结构,七株眼虫在距离为0.9346处分为三支:E.mutabilis,E.intermedia和E.gracilis.其中,

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short hairpin RNA (shRNA) directed by RNA polymerase III (Pol III) or Pol II promoter was shown to be capable of silencing gene expression, which should permit analyses of gene functions or as a potential therapeutic tool. However, the inhibitory effect of shRNA remains problematic in fish. We demonstrated that silencing efficiency by shRNA produced from the hybrid construct composed of the CMV enhancer or entire CMV promoter placed immediately upstream of a U6 promoter. When tested the exogenous gene, silencing of an enhanced green fluorescent protein (EGFP) target gene was 89.18 +/- 5.06% for CMVE-U6 promoter group and 88.26 +/- 6.46% for CMV-U6 promoter group. To test the hybrid promoters driving shRNA efficiency against an endogenous gene, we used shRNA against no tail (NTL) gene. When vectorized in the zebrafish, the hybrid constructs strongly repressed NTL gene expression. The NTL phenotype occupied 52.09 +/- 3.06% and 51.56 +/- 3.68% for CMVE-U6 promoter and CMV-U6 promoter groups, respectively. The NTL gene expression reduced 82.17 +/- 2.96% for CMVE-U6 promoter group and 83.06 +/- 2.38% for CMV-U6 promoter group. We concluded that the CMV enhancer or entire CMV promoter locating upstream of the U6-promoter could significantly improve inhibitory effect induced by the shRNA for both exogenous and endogenous genes compared with the CMV promoter or U6 promoter alone. In contrast, the two hybrid promoter constructs had similar effects on driving shRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to utilize the RNA interference (RNAi) machinery for silencing target-gene expression has created a lot of excitement in the research community. In the present study, we used a cytomegalovirus (CMV) promoter-driven DNA template approach to induce short hairpin RNA (shRNA) triggered RNAi to block exogenous Enhanced Green Fluorescent Protein (EGFP) and endogenous No Tail (NTL) gene expressions. We constructed three plasmids, pCMV-EGFP-CMV-shGFP-SV40, pCMV-EGFP-CMV-shNTL-SV40, and pCMV-EGFP-CMV-shScrambled-SV40, each containing a CMV promoter driving an EGFP reporter cDNA and DNA coding for one shRNA under the control of another CMV promoter. The three shRNA-generating plasmids and pCMV-EGFP control plasmid were introduced into zebrafish embryos by microinjection. Samples were collected at 48 h after injection. Results were evaluated by phenotype observation and real-time fluorescent quantitative reverse-transcription polymerase chain reaction (Q-PCR). The shGFP-generating plasmid significantly inhibited the EGFP expression viewed under fluorescent microscope and reduced by 70.05 +/- 1.26% of exogenous EGFP gene mRNA levels compared with controls by Q-PCR. The shRNA targeting endogenous NTL gene resulted in obvious NTL phenotype of 30 +/- 4% and decreased the level of their corresponding mRNAs up to 54.52 +/- 2.05% compared with nontargeting control shRNA. These data proved the feasibility of the CMV promoter-driven shRNA expression technique to be used to inhibit exogenous and endogenous gene expressions in zebrafish in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A short-hairpin RNA (shRNA) expression system, based on T7 RNA polymerase (T7RP) directed transcription machinery, has been developed and used to generate a knock down effect in zebrafish embryos by targeting green fluorescent protein (gfp) and no tail (ntl) mRNA. The vector pCMVT7R harboring T7RP driven by CMV promoter was introduced into zebrafish embryos and the germline transmitted transgenic individuals were screened out for subsequent RNAi application. The shRNA transcription vectors pT7shRNA were constructed and validated by in vivo transcription assay. When pT7shGFP vector was injected into the transgenic embryos stably expressing T7RP, gfp relative expression level showed a decrease of 68% by analysis of fluorescence real time RT-PCR. As a control, injection of chemical synthesized siRNA resulted in expression level of 40% lower than the control when the injection dose was as high as 2 mu g/mu l. More importantly, injection of pT7shNTL vector in zebrafish embryos expressing T7RP led to partial absence of endogenous ntl transcripts in 30% of the injected embryos when detected by whole mount in situ hybridization. Herein, the T7 transcription system could be used to drive the expression of shRNA in zebrafish embryos and result in gene knock down effect, suggesting a potential role for its application in RNAi studies in zebrafish embryos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With current gene-transfer techniques in fish, insertion of DNA into the genome occurs randomly and in many instances at multiple sites. Associated position effects, copy number differences, and multiple gene interactions make gene expression experiments difficult to interpret and fish phenotype less predictable. To meet different fish engineering needs, we describe here a gene targeting model in zebrafish. At first, four target zebrafish lines, each harboring a single genomic lox71 target site, were generated by zebrafish transgenesis. The zygotes of transgenic zebrafish lines were coinjected with capped Cre mRNA and a knockin vector pZklox66RFP. Site-specific integration event happened from one target zebrafish line. In this line two integrant zebrafish were obtained from more than 80,000 targeted embryos (integrating efficiency about 10(-4) to 10(-5)) and confirmed to have a sole copy of the integrating DNA at the target genome site. Genomic polymerase chain reaction analysis and DNA sequencing verified the correct gene target events where lox71 and lox66 have accurately recombined into double mutant lox72 and wild-type loxP. Each integrant zebrafish chosen for analysis harbored the transgene rfp at the designated egfp concatenates. Although the Cre-mediated recombination is site specific, it is dependent on a randomly placed target site. That is, a genomic target cannot be preselected for integration based solely on its sequence. Conclusively, an rfp reporter gene was successfully inserted into the egfp target locus of zebrafish genome by Cre-lox-mediated recombination. This site-directed knockin system using the lox71/lox66 combination should be a promising gene-targeting platform serving various purposes in fish genetic engineering.