984 resultados para DIODE-PUMPED NEODYMIUM
Resumo:
Experimental suppression of chaos has been achieved in an optically pumped far-infrared (NH3)-N-15 laser which displays Lorenz-like chaos. The method of control involves the application of a large amplitude slow (i.e., nonresonant) modulation of the pump power. This may be related to a delayed bifurcation to chaos observed when the pump power is ramped at a constant late.
Resumo:
We present models for the optical functions of 11 metals used as mirrors and contacts in optoelectronic and optical devices: noble metals (Ag, Au, Cu), aluminum, beryllium, and transition metals (Cr, Ni, Pd, Pt, Ti, W). We used two simple phenomenological models, the Lorentz-Drude (LD) and the Brendel-Bormann (BB), to interpret both the free-electron and the interband parts of the dielectric response of metals in a wide spectral range from 0.1 to 6 eV. Our results show that the BE model was needed to describe appropriately the interband absorption in noble metals, while for Al, Be, and the transition metals both models exhibit good agreement with the experimental data. A comparison with measurements on surface normal structures confirmed that the reflectance and the phase change on reflection from semiconductor-metal interfaces (including the case of metallic multilayers) can be accurately described by use of the proposed models for the optical functions of metallic films and the matrix method for multilayer calculations. (C) 1998 Optical Society of America.
Resumo:
The formability and stability of the alpha-sialon (alpha') phase was investigated in multi-cation Nd-Li-sialon systems. Four samples were prepared, ranging from a pure Nd-sialon to a pure Li-sialon, with two intermediate samples being prepared with either lithium or neodymium replacing the other alpha'-stabilising additive by 20 eq.%, as to maintain an equivalent design composition in all samples. After sintering, all samples were subsequently heat treated up to 192 h at 1450 and 1300 degreesC. While significant quantities of the beta'-sialon (beta' phase were found in most samples, the high-lithium Li-Nd-sialon sample was found to be almost pure a' phase after sintering. Furthermore, the long-term stability of the a' phase on heat treatment was also found to be superior in both multi-cation samples than in either of the single-alpha'-stabilising-cation samples. This is thought to be related to improved retention of the lithium in the multi-cation systems, as much of the lithium was found to volatilise during sintering in the neodymium-free sample. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Photodynamic therapy (PDT) for cancer is a therapeutic modality in the treatment of tumors in which visible light is used to activate a photosensitizer. Cell membranes have been identified as an important intracellular target for singlet oxygen produced during the photochemical pathway. This study analyzed the cytotoxicity in specific cellular targets of a photosensitizer used in PDT in vitro. The photosensitizing effects of chloroaluminum phthalocyanine liposomal were studied on the mitochondria, cytoskeleton and endoplasmic reticulum of HeLa cells. Cells were irradiated with a diode laser working at 670 nm, energy density of 4.5 J/cm(2) and power density of 45 mW/cm(2). Fluorescence microscopic analysis of the mitochondria showed changes in membrane potential. After PDT treatment, the cytoskeleton and endoplasmic reticulum presented basic alterations in distribution. The combined effect of AlPHCl liposomal and red light in the HeLa cell line induced photodamage to the mitochondria, endoplasmic reticulum and actin filaments in the cytoskeleton. (c) 2008 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.
Resumo:
Magnetic field effects on the conductivity of different types of organic devices: undoped and dye doped aluminium (III) 8-hydroxyquinoline (Alq(3))-based organic light emitting diodes (OLEDs), electron-only Alq(3)-based diodes, and a hole-only N,N`-diphenyl-N,N`-bis(1-naphthyl)1,1`-biphenyl-4,4`-diamine (alpha-NPD)-based diode were studied at room temperature. Only negative magnetoresistance (MR) was observed for the Alq(3)-based devices. The addition of a rubrene dye in Alq(3)-based OLEDs quenches the MR by a factor of 5. The alpha-NPD hole-only device showed only positive MR. Our results are discussed with respect to the actual models for MR in organic semiconductors. Our results are in good agreement with the bipolaron model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background/Aims: The use of low-level laser therapy (LLLT) in neurosurgery is still hardly disseminated and there are situations in which the effects of this therapeutic tool would be extremely relevant in this medical field. The aim of the present study is to analyze the effect of LLLT on tissue repair after the corrective surgical incision in neonates with myelomeningocele, in an attempt to diminish the incidence of postoperative dehiscences following surgical repair performed immediately after birth. Materials and Methods: Prospective pilot study with 13 patients submitted to surgery at birth who received adjuvant treatment with LLLT (group A). A diode laser CW, lambda = 685 nm, p = 21 mW, was applied punctually along the surgical incision, with 0.19 J delivered per point, accounting for a total of 4-10 J delivered energy per patient, according to the surgical wound area and then compared with the results obtained in 23 patients who underwent surgery without laser therapy (group B). Results: This pilot study disclosed a significant decline in dehiscences of the surgical wounds in neonates who were submitted to LLLT (7.69 vs. 17.39%). Conclusion: This new adjuvant therapeutic modality with LLLT aided the healing of surgical wounds, preventing morbidities, as well as shortening the period of hospital stay, which implies a reduction of costs for patients and for the institution. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Antiphase dynamics of an optically pumped NH3 bidirectional ring laser under the chaotic, phase-sensitive mode coupling is experimentally observed. Our experimental result suggests strongly that the dynamics is a generic behavior of the laser.
Resumo:
We show experimentally that under certain conditions the chaotic intensity dynamics of an optically pumped NH3 bidirectional ring laser could be well described in terms of Shil'nikov homoclinic orbits and chaos. We found that the mechanism that resulted in this kind of dynamics of the laser is the competition between effects caused by the mode interaction between the forward and the backward modes of the laser and by the intrinsic single-mode dynamics of the interacting modes. (C) 1997 Optical Society of America.
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.
Resumo:
This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.
Resumo:
Objective: We tested the hypothesis that combined 660 and 890 nm LED phototherapy will promote healing of diabetic ulcers that failed to respond to other forms of treatment. Research Design and Methods: A double-blind randomized placebo controlled design was used to study 23 diabetic leg ulcers in two groups of 14 patients. Group one ulcers were cleaned, dressed with 1% silver sulfadiazine cream and treated with ""placebo"" phototherapy (<1.0 J cm(-2)) twice per week, using a Dynatron Solaris 705 (R) device. Group two ulcers were treated similarly but received 3 J cm(-2) dose. Results: At each of 15,30,45,60,75, and 90 days of healing, mean ulcer granulation and healing rates were significantly higher for group two than the ""placebo"" group (P < 0.02). While ""placebo"" treated ulcers worsened during the initial 30 days, group two ulcers healed rapidly; achieving 56% more granulation and 79.2% faster healing by day 30, and maintaining similarly higher rates of granulation and healing over the ""placebo"" group all through. By day 90, 58.3% of group two ulcers had healed fully and 75% had achieved 90-100% healing. In contrast, only one ""placebo"" treated ulcer healed fully by day 90; no other ulcer attained >90% healing. Conclusion: Combined 660 and 890 nm light promotes rapid granulation and healing of diabetic ulcers that failed to respond to other forms of treatment. Lasers Surg. Med. 41:433-441, 2009. (C) 2009 Wiley-Liss, Inc.
Resumo:
Purpose: To evaluate the efficacy and safety of diode laser transscleral cyclophotocoagulation (DLTSC) to control intraocular pressure (IOP) in keratoprosthesis patients with uncontrolled glaucoma. Patients and Methods: Between 1993 and 2007, 18 eyes of 18 patients underwent DLTSC, either before (n = 3), during (n = I), or after (n = 14) keratoprosthesis surgery. Keratoprosthesis type 1 was used in 72%. All but one of these patients received an Ahmed Glaucoma Valve, either with or after the keratoprosthesis placement. Best-corrected visual acuity, IOP (assessed by digital palpation), number of medications, and complications were recorded preoperatively, at day 7, at 1, 3, and 6 months then every 6 months postoperatively. Results: Mean follow-tip was 26.6 +/- 19.6 months (mean +/- SD) and mean age was 50.1 +/- 15.6 years. Glaucoma was identified in 1 I eyes before keratoprosthesis surgery and in 7 eyes after. Mean postoperative IOP was significantly reduced at 6, 12, 24, 36, and 48 months after DLTSC. DLTSC was repeated in 6 eyes. At final visit, mean best-corrected visual acuity was not decreased and there were no statistically significant differences in the number of glaucoma medications. Two patients had complications after DLTSC: a conjunctival dehiscence and a fungal endophthalmitis. Conclusions: DLTSC has beneficial long-term effects in the control of IOP and can be considered in the management of keratoprosthesis patients with refractory glaucoma.
Resumo:
Background: This in vivo study assessed and compared the effectiveness of an aqueous indocyanine green (ICG) formulation (R-ICG) and a lipid ICG formulation (L-ICG) in occluding the rabbit choriocapillaris, and determined the singlet oxygen quantum yields and aggregation properties of both formulations in vitro. Methods: Singlet oxygen production and aggregation were compared. The eye fundus of 30 albino rabbits was irradiated 0-15 min after dye injection using an 810 nm diode laser. Fluorescein angiography and light microscopy were used to evaluate the safety and efficacy of R-ICG and L-ICG. Results: L-ICG decreased the dimerisation constant and the tendency of ICG to form aggregates, and increased the efficiency of ICG in generating singlet oxygen (R-ICG, Phi Delta= 0.120 and L-ICG, Phi Delta= 0.210). Using a 10 mg/kg dose, choriocapillaris occlusion was achieved at a light dose of 35.8 J/cm(2) with L-ICG and 71.6 J/cm(2) with R-ICG with minimal damage to the neurosensory retina. Conclusion: Restrictions to the use of ICG in aqueous solution, low singlet oxygen quantum yields and high aggregation tendency, were overcome with L-ICG. The lower laser irradiance required to obtain choriocapillaris occlusion may suggest that L-ICG is a more potent and selective photosensitiser than R-ICG.
Resumo:
Purpose: To investigate the effects of intrapulpal temperature changes induced by a quartz tungsten halogen (QTH) and a light emitting diode (LED) curing units on the metabolism of odontoblast-like cells. Methods: Thirty-six 0.5 mm-thick dentin discs obtained from sound human teeth were randomly assigned into three groups: QTH, LED and no light (control). After placement of the dentin discs in pulp chamber devices, a thermistor was attached to the pulpal surface of each disc and the light sources were applied on the occlusal surface. After registering the temperature change, odontoblast-like cells MDPC-23 were seeded on the pulpal side of the discs and the curing lights were again applied. Cell metabolism was evaluated by the MTT assay and cell morphology was assessed by SEM. Results: In groups QTH and LED the intrapulpal temperature increased by 6.4 degrees C and 3.4 degrees C, respectively. The difference between both groups was statistically significant (Mann-Whitney; P< 0.05). QTH and LED reduced the cell metabolism by 36.4% and 33.4%, respectively. Regarding the cell metabolism, no statistically significant difference was observed between both groups (Mann-Whitney; P> 0.05). However, when compared to the control, only QTH significantly reduced the cell metabolism (Mann-Whitney; P< 0.05). It was concluded that the irradiance of 0.5 mm-thick human dentin discs with a QTH in comparison to a LED curing unit promoted a higher temperature rise, which propagates through the dentin negatively affecting the metabolism of the underlying cultured pulp cells. (Am J Dent 2009;22:151-156).