986 resultados para DEFROSTED ISOLATED TOTAL RNA
Resumo:
Human Parvovirus B19 (B19V) is a recognized cause of life-threatening conditions among patients with hemoglobinopathies. This study investigates B19V infection in patients with sickle cell disease and beta-thalassemia using different experimental approaches. A total of 183 individuals (144 with sickle cell disease and 39 with beta-thalassemia major) and 100 healthy blood donors were examined for B19V using anti-B19V IgG enzyme immunoassay, quantitative PCR, DNA sequencing, and phylogenetic analysis. Viremia was documented in 18.6% of patients and 1% of donors, and was generally characterized by low viral load (VL); however, acute infections were also observed. Anti-B19V IgG was detected in 65.9% of patients with sickle cell disease and in 60% of donors, whereas the patients with thalassemia exhibited relatively low seroreactivity. The seroprevalence varied among the different age groups. In patients, it progressively increased with age, whereas in donors it reached a plateau. Based on partial NS1 fragments, all isolates detected were classified as subgenotype 1A with a tendency to elicit genetically complex infections. Interestingly, quasispecies occurred in the plasma of not only patients but also donors with even higher heterogeneity. The partial NS1 sequence examined did not exhibit positive selection. Quantitation of B19V with a conservative probe is a technically and practically useful approach. The extensive spread of B19V subgenotype 1A in patients and donors and its recent introduction into the countryside of the Sao Paulo State, Brazil were demonstrated; however, it is difficult to establish a relationship between viral sequences and the clinical outcomes of the infection. J. Med. Virol. 84:16521665, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Insulin and the inhibition of the reninangiotensin system have independent benefits for ischemiareperfusion injury, but their combination has not been tested. Our aim was to evaluate the effects of insulin+captopril on insulin/angiotensin signaling pathways and cardiac function in the isolated heart subjected to ischemiareperfusion. Isolated hearts were perfused (Langendorff technique) with KrebsHenseleit (KH) buffer for 25 min. Global ischemia was induced (20 min), followed by reperfusion (30 min) with KH (group KH), KH+angiotensin-I (group A), KH+angiotensin-I+captopril (group AC), KH+insulin (group I), KH+insulin+angiotensin-I (group IA), or KH+insulin+angiotensin-I+captopril (group IAC). Group A had a 24% reduction in developed pressure and an increase in end-diastolic pressure vs. baseline, effects that were reverted in groups AC, IA, and IAC. The phosphorylation of protein kinase B (AKT) was higher in groups I and IA vs. groups KH and A. The phosphorylation of AMP-activated protein kinase (AMPK) was similar to 31% higher in groups I, IA, and IAC vs. groups KH, A, and AC. The tert-butyl hydroperoxide (tBOOH)-induced chemiluminescence was lower (similar to 2.2 times) in all groups vs. group KH and was similar to 35% lower in group IA vs. group A. Superoxide dismutase content was lower in groups A, AC, and IAC vs. group KH. Catalase activity was similar to 28% lower in all groups (except group IA) vs. group KH. During reperfusion of the ischemic heart, insulin activates the AKT and AMPK pathways and inhibits the deleterious effects of angiotensin-I perfusion on SOD expression and cardiac function. The addition of captopril does not potentiate these effects.
Resumo:
Introduction: This study aimed to isolate and identify Candida spp. from the environment, health practitioners, and patients with the presumptive diagnosis of candidiasis in the Pediatric Unit at the Universitary Hospital of the Jundiai Medical College, to verify the production of enzymes regarded as virulence factors, and to determine how susceptible the isolated samples from patients with candidiasis are to antifungal agents. Methods: Between March and November of 2008 a total of 283 samples were taken randomly from the environment and from the hands of health staff, and samples of all the suspected cases of Candida spp. hospital-acquired infection were collected and selected by the Infection Control Committee. The material was processed and the yeast genus Candida was isolated and identified by physiological, microscopic, and macroscopic attributes. Results: The incidence of Candida spp. in the environment and employees was 19.2%. The most frequent species were C. parapsilosis and C. tropicalis among the workers, C. guilliermondii and C. tropicalis in the air, C. lusitanae on the contact surfaces, and C. tropicalis and C. guilliermondii in the climate control equipment. The college hospital had 320 admissions, of which 13 (4%) presented Candida spp. infections; three of them died, two being victims of a C. tropicalis infection and the remaining one of C. albicans. All the Candida spp. in the isolates evidenced sensitivity to amphotericin B, nystatin, and fluconazole. Conclusions: The increase in the rate of hospital-acquired infections caused by Candida spp. indicates the need to take larger measures regarding recurrent control of the environment.
Resumo:
Objectives To evaluate the accuracy and probabilities of different fetal ultrasound parameters to predict neonatal outcome in isolated congenital diaphragmatic hernia (CDH). Methods Between January 2004 and December 2010, we evaluated prospectively 108 fetuses with isolated CDH (82 left-sided and 26 right-sided). The following parameters were evaluated: gestational age at diagnosis, side of the diaphragmatic defect, presence of polyhydramnios, presence of liver herniated into the fetal thorax (liver-up), lung-to-head ratio (LHR) and observed/expected LHR (o/e-LHR), observed/expected contralateral and total fetal lung volume (o/e-ContFLV and o/e-TotFLV) ratios, ultrasonographic fetal lung volume/fetal weight ratio (US-FLW), observed/expected contralateral and main pulmonary artery diameter (o/e-ContPA and o/eMPA) ratios and the contralateral vascularization index (Cont-VI). The outcomes were neonatal death and severe postnatal pulmonary arterial hypertension (PAH). Results Neonatal mortality was 64.8% (70/108). Severe PAH was diagnosed in 68 (63.0%) cases, of which 63 died neonatally (92.6%) (P < 0.001). Gestational age at diagnosis, side of the defect and polyhydramnios were not associated with poor outcome (P > 0.05). LHR, o/eLHR, liver-up, o/e-ContFLV, o/e-TotFLV, US-FLW, o/eContPA, o/e-MPA and Cont-VI were associated with both neonatal death and severe postnatal PAH (P < 0.001). Receiver-operating characteristics curves indicated that measuring total lung volumes (o/e-TotFLV and US-FLW) was more accurate than was considering only the contralateral lung sizes (LHR, o/e-LHR and o/e-ContFLV; P < 0.05), and Cont-VI was the most accurate ultrasound parameter to predict neonatal death and severe PAH (P < 0.001). Conclusions Evaluating total lung volumes is more accurate than is measuring only the contralateral lung size. Evaluating pulmonary vascularization (Cont-VI) is the most accurate predictor of neonatal outcome. Estimating the probability of survival and severe PAH allows classification of cases according to prognosis. Copyright (C) 2011 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
Pasteurella multocida is responsible for a wide range of diseases in domestic animals. In rabbits, the agent is related to nasal discharge, pneumonia, otitis media, pyometra, orchitis, abscess, and septicemia. One hundred and forty rabbits with respiratory diseases from four rabbitries in Sao Paulo State, Brazil were evaluated for the detection of P. multocida in their nasal cavities. A total of twenty-nine animals were positive to P. multocida isolation, and 46 strains were selected and characterized by means of biochemical tests and PCR. P. multocida strains were tested for capsular type, virulence genes, and resistance profile. A total of 45.6% (21/46) of isolates belonged to capsular type A, and 54.34% (25/46) of the isolates were untypeable. None of the strains harboured toxA or pfhA genes. The frequency of the other twenty genes tested was variable, and the data generated was used to build a dendrogram, showing the relatedness of strains, which were clustered according to origin. Resistance revealed to be more common against sulfonamides and cotrimoxazole, followed by erythromycin, penicillin, and amoxicillin.
Resumo:
The global emergence of vancomycin-resistant Enterococcus faecium (VREfm) has been characterized by a clonal spread of strains belonging to clonal complex 17 (CC17). Genetic features and clonal relationships of 53 VREfm isolated from patients in 2 hospitals in Ribeirao Preto, Sao Paulo, Brazil, during 2005-2010 were determined as a contribution to the Brazilian evolutionary history of these nosocomial pathogens. All isolates were daptomycin susceptible, vancomycin-resistant, and had the vanA gene. The predominant virulence genes were acm and esp. Only 5 VREfm isolated in 2005-2006 had intact Tn1546, while 81% showed Tn1546 with deleted left extremity and insertion of IS1251 between the vanS and vanH genes. Multilocus sequence typing analysis permitted the identification of 9 different sequence types (STs), with 5 being new ones (656, 657, 658, 659, and 660). Predominant STs were ST412 and ST478, all belonging to CC17, except ST658. This is the first report of the ST78 in Brazil. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Abstract Background Leishmania (Leishmania) amazonensis infection in man results in a clinical spectrum of disease manifestations ranging from cutaneous to mucosal or visceral involvement. In the present study, we have investigated the genetic variability of 18 L. amazonensis strains isolated in northeastern Brazil from patients with different clinical manifestations of leishmaniasis. Parasite DNA was analyzed by sequencing of the ITS flanking the 5.8 S subunit of the ribosomal RNA genes, by RAPD and SSR-PCR and by PFGE followed by hybridization with gene-specific probes. Results ITS sequencing and PCR-based methods revealed genetic heterogeneity among the L. amazonensis isolates examined and molecular karyotyping also showed variation in the chromosome size of different isolates. Unrooted genetic trees separated strains into different groups. Conclusion These results indicate that L. amazonensis strains isolated from leishmaniasis patients from northeastern Brazil are genetically diverse, however, no correlation between genetic polymorphism and phenotype were found.
Resumo:
INTRODUCTION: This study aimed to isolate and identify Candida spp. from the environment, health practitioners, and patients with the presumptive diagnosis of candidiasis in the Pediatric Unit at the Universitary Hospital of the Jundiaí Medical College, to verify the production of enzymes regarded as virulence factors, and to determine how susceptible the isolated samples from patients with candidiasis are to antifungal agents. METHODS: Between March and November of 2008 a total of 283 samples were taken randomly from the environment and from the hands of health staff, and samples of all the suspected cases of Candida spp. hospital-acquired infection were collected and selected by the Infection Control Committee. The material was processed and the yeast genus Candida was isolated and identified by physiological, microscopic, and macroscopic attributes. RESULTS: The incidence of Candida spp. in the environment and employees was 19.2%. The most frequent species were C. parapsilosis and C. tropicalis among the workers, C. guilliermondii and C. tropicalis in the air, C. lusitanae on the contact surfaces, and C. tropicalis and C. guilliermondii in the climate control equipment. The college hospital had 320 admissions, of which 13 (4%) presented Candida spp. infections; three of them died, two being victims of a C. tropicalis infection and the remaining one of C. albicans. All the Candida spp. in the isolates evidenced sensitivity to amphotericin B, nystatin, and fluconazole. CONCLUSIONS: The increase in the rate of hospital-acquired infections caused by Candida spp. indicates the need to take larger measures regarding recurrent control of the environment.
Resumo:
The lipase produced by a newly isolate Sporidiobolus pararoseus strain has potential catalysis ability for esterification reactions. In order to improve its synthetic activity, this work aimed at optimizing 'synthetic lipase' production by submerged fermentation of a conventional media based on peptone, yeast extract, NaCl and olive oil using experimental design technique. According to the results obtained in the first experimental design (2(4-1)), yeast extract and NaCl concentrations were tested to further optimization by response surface methodology. The maximum 'synthetic lipase' activity obtained was 26.9 U/mL in the optimized media (5.0, 6.8, 7.0 and 1.0% (wt/v) of peptone, yeast extract, NaCl and olive oil, respectively), representing a 6.36-fold increase compared to the initial medium. The time course of 'synthetic lipase' production in the optimized condition was evaluated in terms of synthetic activity, protease activity, biomass and total carbon and the maximum synthetic activity was observed during the stationary phase of growth.
Resumo:
Surprisingly little is known of the toxic arsenal of cnidarian nematocysts compared to other venomous animals. Here we investigate the toxins of nematocysts isolated from the jellyfish Olindias sambaquiensis. A total of 29 unique ms/ms events were annotated as potential toxins homologous to the toxic proteins from diverse animal phyla, including conesnails, snakes, spiders, scorpions, wasp, bee, parasitic worm and other Cnidaria. Biological activities of these potential toxins include cytolysins, neurotoxins, phospholipases and toxic peptidases. The presence of several toxic enzymes is intriguing, such as sphingomyelin phosphodiesterase B (SMase B) that has only been described in certain spider venoms, and a prepro-haystatin P-IIId snake venom metalloproteinase (SVMP) that activates coagulation factor X, which is very rare even in snake venoms. Our annotation reveals sequence orthologs to many representatives of the most important superfamilies of peptide venoms suggesting that their origins in higher organisms arise from deep eumetazoan innovations. Accordingly, cnidarian venoms may possess unique biological properties that might generate new leads in the discovery of novel pharmacologically active drugs.
Resumo:
[ES] En este trabajo, hemos tratado de identificar, y poner a punto las técnicas necesarias para la cuantificación de los miRNAs asociados con el control post-transcripcional del receptor de andrógenos (AR) y el receptor de estrógenos (ER) en tumores de mama. Para ello, hemos usado las bases de datos publicadas en Internet. Además, comparamos la cantidad y la calidad del RNA total aislado (miRNA y mRNA) en 11 tumores de mama incluidos en parafina mediante el uso de dos kits comerciales.
Resumo:
The ideal approach for the long term treatment of intestinal disorders, such as inflammatory bowel disease (IBD), is represented by a safe and well tolerated therapy able to reduce mucosal inflammation and maintain homeostasis of the intestinal microbiota. A combined therapy with antimicrobial agents, to reduce antigenic load, and immunomodulators, to ameliorate the dysregulated responses, followed by probiotic supplementation has been proposed. Because of the complementary mechanisms of action of antibiotics and probiotics, a combined therapeutic approach would give advantages in terms of enlargement of the antimicrobial spectrum, due to the barrier effect of probiotic bacteria, and limitation of some side effects of traditional chemiotherapy (i.e. indiscriminate decrease of aggressive and protective intestinal bacteria, altered absorption of nutrient elements, allergic and inflammatory reactions). Rifaximin (4-deoxy-4’-methylpyrido[1’,2’-1,2]imidazo[5,4-c]rifamycin SV) is a product of synthesis experiments designed to modify the parent compound, rifamycin, in order to achieve low gastrointestinal absorption while retaining good antibacterial activity. Both experimental and clinical pharmacology clearly show that this compound is a non systemic antibiotic with a broad spectrum of antibacterial action, covering Gram-positive and Gram-negative organisms, both aerobes and anaerobes. Being virtually non absorbed, its bioavailability within the gastrointestinal tract is rather high with intraluminal and faecal drug concentrations that largely exceed the MIC values observed in vitro against a wide range of pathogenic microorganisms. The gastrointestinal tract represents therefore the primary therapeutic target and gastrointestinal infections the main indication. The little value of rifaximin outside the enteric area minimizes both antimicrobial resistance and systemic adverse events. Fermented dairy products enriched with probiotic bacteria have developed into one of the most successful categories of functional foods. Probiotics are defined as “live microorganisms which, when administered in adequate amounts, confer a health benefit on the host” (FAO/WHO, 2002), and mainly include Lactobacillus and Bifidobacterium species. Probiotic bacteria exert a direct effect on the intestinal microbiota of the host and contribute to organoleptic, rheological and nutritional properties of food. Administration of pharmaceutical probiotic formula has been associated with therapeutic effects in treatment of diarrhoea, constipation, flatulence, enteropathogens colonization, gastroenteritis, hypercholesterolemia, IBD, such as ulcerative colitis (UC), Crohn’s disease, pouchitis and irritable bowel syndrome. Prerequisites for probiotics are to be effective and safe. The characteristics of an effective probiotic for gastrointestinal tract disorders are tolerance to upper gastrointestinal environment (resistance to digestion by enteric or pancreatic enzymes, gastric acid and bile), adhesion on intestinal surface to lengthen the retention time, ability to prevent the adherence, establishment and/or replication of pathogens, production of antimicrobial substances, degradation of toxic catabolites by bacterial detoxifying enzymatic activities, and modulation of the host immune responses. This study was carried out using a validated three-stage fermentative continuous system and it is aimed to investigate the effect of rifaximin on the colonic microbial flora of a healthy individual, in terms of bacterial composition and production of fermentative metabolic end products. Moreover, this is the first study that investigates in vitro the impact of the simultaneous administration of the antibiotic rifaximin and the probiotic B. lactis BI07 on the intestinal microbiota. Bacterial groups of interest were evaluated using culture-based methods and molecular culture-independent techniques (FISH, PCR-DGGE). Metabolic outputs in terms of SCFA profiles were determined by HPLC analysis. Collected data demonstrated that rifaximin as well as antibiotic and probiotic treatment did not change drastically the intestinal microflora, whereas bacteria belonging to Bifidobacterium and Lactobacillus significantly increase over the course of the treatment, suggesting a spontaneous upsurge of rifaximin resistance. These results are in agreement with a previous study, in which it has been demonstrated that rifaximin administration in patients with UC, affects the host with minor variations of the intestinal microflora, and that the microbiota is restored over a wash-out period. In particular, several Bifidobacterium rifaximin resistant mutants could be isolated during the antibiotic treatment, but they disappeared after the antibiotic suspension. Furthermore, bacteria belonging to Atopobium spp. and E. rectale/Clostridium cluster XIVa increased significantly after rifaximin and probiotic treatment. Atopobium genus and E. rectale/Clostridium cluster XIVa are saccharolytic, butyrate-producing bacteria, and for these characteristics they are widely considered health-promoting microorganisms. The absence of major variations in the intestinal microflora of a healthy individual and the significant increase in probiotic and health-promoting bacteria concentrations support the rationale of the administration of rifaximin as efficacious and non-dysbiosis promoting therapy and suggest the efficacy of an antibiotic/probiotic combined treatment in several gut pathologies, such as IBD. To assess the use of an antibiotic/probiotic combination for clinical management of intestinal disorders, genetic, proteomic and physiologic approaches were employed to elucidate molecular mechanisms determining rifaximin resistance in Bifidobacterium, and the expected interactions occurring in the gut between these bacteria and the drug. The ability of an antimicrobial agent to select resistance is a relevant factor that affects its usefulness and may diminish its useful life. Rifaximin resistance phenotype was easily acquired by all bifidobacteria analyzed [type strains of the most representative intestinal bifidobacterial species (B. infantis, B. breve, B. longum, B. adolescentis and B. bifidum) and three bifidobacteria included in a pharmaceutical probiotic preparation (B. lactis BI07, B. breve BBSF and B. longum BL04)] and persisted for more than 400 bacterial generations in the absence of selective pressure. Exclusion of any reversion phenomenon suggested two hypotheses: (i) stable and immobile genetic elements encode resistance; (ii) the drug moiety does not act as an inducer of the resistance phenotype, but enables selection of resistant mutants. Since point mutations in rpoB have been indicated as representing the principal factor determining rifampicin resistance in E. coli and M. tuberculosis, whether a similar mechanism also occurs in Bifidobacterium was verified. The analysis of a 129 bp rpoB core region of several wild-type and resistant bifidobacteria revealed five different types of miss-sense mutations in codons 513, 516, 522 and 529. Position 529 was a novel mutation site, not previously described, and position 522 appeared interesting for both the double point substitutions and the heterogeneous profile of nucleotide changes. The sequence heterogeneity of codon 522 in Bifidobacterium leads to hypothesize an indirect role of its encoded amino acid in the binding with the rifaximin moiety. These results demonstrated the chromosomal nature of rifaximin resistance in Bifidobacterium, minimizing risk factors for horizontal transmission of resistance elements between intestinal microbial species. Further proteomic and physiologic investigations were carried out using B. lactis BI07, component of a pharmaceutical probiotic preparation, as a model strain. The choice of this strain was determined based on the following elements: (i) B. lactis BI07 is able to survive and persist in the gut; (ii) a proteomic overview of this strain has been recently reported. The involvement of metabolic changes associated with rifaximin resistance was investigated by proteomic analysis performed with two-dimensional electrophoresis and mass spectrometry. Comparative proteomic mapping of BI07-wt and BI07-res revealed that most differences in protein expression patterns were genetically encoded rather than induced by antibiotic exposure. In particular, rifaximin resistance phenotype was characterized by increased expression levels of stress proteins. Overexpression of stress proteins was expected, as they represent a common non specific response by bacteria when stimulated by different shock conditions, including exposure to toxic agents like heavy metals, oxidants, acids, bile salts and antibiotics. Also, positive transcription regulators were found to be overexpressed in BI07-res, suggesting that bacteria could activate compensatory mechanisms to assist the transcription process in the presence of RNA polymerase inhibitors. Other differences in expression profiles were related to proteins involved in central metabolism; these modifications suggest metabolic disadvantages of resistant mutants in comparison with sensitive bifidobacteria in the gut environment, without selective pressure, explaining their disappearance from faeces of patients with UC after interruption of antibiotic treatment. The differences observed between BI07-wt e BI07-res proteomic patterns, as well as the high frequency of silent mutations reported for resistant mutants of Bifidobacterium could be the consequences of an increased mutation rate, mechanism which may lead to persistence of resistant bacteria in the population. However, the in vivo disappearance of resistant mutants in absence of selective pressure, allows excluding the upsurge of compensatory mutations without loss of resistance. Furthermore, the proteomic characterization of the resistant phenotype suggests that rifaximin resistance is associated with a reduced bacterial fitness in B. lactis BI07-res, supporting the hypothesis of a biological cost of antibiotic resistance in Bifidobacterium. The hypothesis of rifaximin inactivation by bacterial enzymatic activities was verified by using liquid chromatography coupled with tandem mass spectrometry. Neither chemical modifications nor degradation derivatives of the rifaximin moiety were detected. The exclusion of a biodegradation pattern for the drug was further supported by the quantitative recovery in BI07-res culture fractions of the total rifaximin amount (100 μg/ml) added to the culture medium. To confirm the main role of the mutation on the β chain of RNA polymerase in rifaximin resistance acquisition, transcription activity of crude enzymatic extracts of BI07-res cells was evaluated. Although the inhibition effects of rifaximin on in vitro transcription were definitely higher for BI07-wt than for BI07-res, a partial resistance of the mutated RNA polymerase at rifaximin concentrations > 10 μg/ml was supposed, on the basis of the calculated differences in inhibition percentages between BI07-wt and BI07-res. By considering the resistance of entire BI07-res cells to rifaximin concentrations > 100 μg/ml, supplementary resistance mechanisms may take place in vivo. A barrier for the rifaximin uptake in BI07-res cells was suggested in this study, on the basis of the major portion of the antibiotic found to be bound to the cellular pellet respect to the portion recovered in the cellular lysate. Related to this finding, a resistance mechanism involving changes of membrane permeability was supposed. A previous study supports this hypothesis, demonstrating the involvement of surface properties and permeability in natural resistance to rifampicin in mycobacteria, isolated from cases of human infection, which possessed a rifampicin-susceptible RNA polymerase. To understand the mechanism of membrane barrier, variations in percentage of saturated and unsaturated FAs and their methylation products in BI07-wt and BI07-res membranes were investigated. While saturated FAs confer rigidity to membrane and resistance to stress agents, such as antibiotics, a high level of lipid unsaturation is associated with high fluidity and susceptibility to stresses. Thus, the higher percentage of saturated FAs during the stationary phase of BI07-res could represent a defence mechanism of mutant cells to prevent the antibiotic uptake. Furthermore, the increase of CFAs such as dihydrosterculic acid during the stationary phase of BI07-res suggests that this CFA could be more suitable than its isomer lactobacillic acid to interact with and prevent the penetration of exogenous molecules including rifaximin. Finally, the impact of rifaximin on immune regulatory functions of the gut was evaluated. It has been suggested a potential anti-inflammatory effect of rifaximin, with reduced secretion of IFN-γ in a rodent model of colitis. Analogously, it has been reported a significant decrease in IL-8, MCP-1, MCP-3 e IL-10 levels in patients affected by pouchitis, treated with a combined therapy of rifaximin and ciprofloxacin. Since rifaximin enables in vivo and in vitro selection of Bifidobacterium resistant mutants with high frequency, the immunomodulation activities of rifaximin associated with a B. lactis resistant mutant were also taken into account. Data obtained from PBMC stimulation experiments suggest the following conclusions: (i) rifaximin does not exert any effect on production of IL-1β, IL-6 and IL-10, whereas it weakly stimulates production of TNF-α; (ii) B. lactis appears as a good inducer of IL-1β, IL-6 and TNF-α; (iii) combination of BI07-res and rifaximin exhibits a lower stimulation effect than BI07-res alone, especially for IL-6. These results confirm the potential anti-inflammatory effect of rifaximin, and are in agreement with several studies that report a transient pro-inflammatory response associated with probiotic administration. The understanding of the molecular factors determining rifaximin resistance in the genus Bifidobacterium assumes an applicative significance at pharmaceutical and medical level, as it represents the scientific basis to justify the simultaneous use of the antibiotic rifaximin and probiotic bifidobacteria in the clinical treatment of intestinal disorders.
Resumo:
This project points out a brief overview of several concepts, as Renewable Energy Resources, Distributed Energy Resources, Distributed Generation, and describes the general architecture of an electrical microgrid, isolated or connected to the Medium Voltage Network. Moreover, the project focuses on a project carried out by GRECDH Department in collaboration with CITCEA Department, both belonging to Universitat Politécnica de Catalunya: it concerns isolated microgrids employing renewable energy resources in two communities in northern Peru. Several solutions found using optimization software regarding different generation systems (wind and photovoltaic) and different energy demand scenarios are commented and analyzed from an electrical point of view. Furthermore, there are some proposals to improve microgrid performances, in particular to increase voltage values for each load connected to the microgrid. The extra costs required by the proposed solutions are calculated and their effect on the total microgrid cost are taken into account; finally there are some considerations about the impact the project has on population and on people's daily life.
Resumo:
Die Morphogenese einer Pflanzenzelle wird in großem Maße durch die Dynamik kortikaler Mikrotubuli (MT) bestimmt, die auf die Zellwandsynthese Einfluß nehmen. In dieser Arbeit wurden die Transkriptmengen der alpha-Tubulin-Isotypen und des gamma-Tubulin während der Entwicklung des Gerstenblattes analysiert, um Zusammenhänge zu bereits beschriebenen Umwandlungen im kortikalen MT-Cytoskelett der Mesophyllzellen aufzudecken. Erstmals konnte bei einer höheren Pflanze die Genexpression auf RNA-Ebene innerhalb einer Tubulin-Multigenfamilie im Verlauf der Blattentwicklung umfassend dargestellt werden.Es wurden blattspezifische cDNA-Bibliotheken erstellt und mittels RT-PCR homologe DNA-Gensonden für die Screeningprozesse der cDNA-Bibliotheken hergestellt. cDNA-Sequenzen von alpha-, beta-, und gamma-Tubulin konnten isoliert werden. Weitere, weniger abundante alpha-Tubulin-Sequenzen wurden während zusätzlicher Screeningrunden über PCR-Ausschluß häufig vertretener, bereits bekannter Isotypen isoliert.Die cDNA-Sequenzen von insgesamt fünf verschiedenen Isotypen des alpha-Tubulin konnten aufgeklärt werden, drei Isotypen wiesen bis zu fünf im nicht kodierenden 3´-Bereich verkürzte Varianten auf, die aber in ihrer Anzahl deutlich unterrepräsentiert waren. Die abgeleiteten Aminosäuresequenzen umfassten bei drei Isotypen 451 Aminosäuren (AS), zwei Isotypen waren im C-Terminus um eine bzw. um zwei AS kürzer. Die fünf alpha-Tubulin-Isotypen wiesen charakteristische Expressionsmuster auf, die in drei Klassen unterteilbar waren. Die Isotypen HVATUB1 und HVATUB5 (MT-Band-Isotypen) hatten den maximalen Gehalt in Blattbereichen, in denen auch hauptsächlich Mesophyllzellen mit kortikalen MT-Bänderungen vorkommen, wobei HVATUB5 den am schwächsten exprimierte Isotyp darstellte. HVATUB3 (Random-MT-Isotyp) zeigte die stärksten Expressionsraten. Die im Meristem und meristemnahen Bereichen bereits recht hohe Abundanz erreichte erst nach der Zellstreckungszone in einer Blattzone das Maximum, in dem hauptsächlich Mesophyllzellen mit zerstreut angeordneten MT anzutreffen sind. Die Isotypen HVATUB2 und HVATUB4 (MImax-Isotypen) waren in mitotisch aktiven, basalen Blattbereichen dominant.Die cDNA-Sequenz vom gamma-Tubulin der Gerste, HVGTUB, wurde ermittelt; die abgeleitete Aminosäuresequenz bestand aus 469 AS. Das Auftreten einer im nicht kodierenden 3´-Bereich kürzeren Variante konnte erstmals bei pflanzlichem gamma-Tubulin beschrieben werden. Southernblot-Analysen ließen darauf schließen, daß gamma-Tubulin nur als Einzelkopie im Genom der Gerste vorkommt. gamma-Tubulin wurde im mitosereichen Meristem der Blattbasis am stärksten exprimiert. Da die Abnahme der Transkriptmenge weitaus langsamer verlief als die Abnahme der Zellteilungsaktivität, ist anzunehmen, daß gamma-Tubulin neben der Erfüllung von mitose- und zellteilungsspezifischen Funktionen auch eine Rolle im Zusammenhang mit der Dynamik des kortikalen MT-Cytoskeletts spielt. Einen ersten Schritt zur Aufklärung der Genfamilie des beta-Tubulin bei Gerste stellt die Isolierung drei verschiedener cDNA-Sequenzen von beta-Tubulin dar.
Resumo:
Die Sekundärmetabolite 4-Dechlor-14-deoxyoxacyclododecindion, 14-Deoxyoxacyclo-dodecindion und Oxacyclododecindion zeigten in ersten in vitro-Studien eine Hemmung des TGF-β- sowie des JAK-STAT-Signaltransduktionsweges im nanomolaren Konzentrationsbereich. Sie stellen potentielle Leitstrukturen für die Entwicklung neuer Therapeutika zur Behandlung chronisch entzündlicher und/oder fibrotischer Erkrankungen dar. Ziel dieser Arbeit war die Entwicklung eines totalsynthetischen Zugangs zu diesen Makrolactonen.rnDer erste retrosynthetische Ansatz bestand aus einer Ringschluss-Metathese/Reduktions/Eliminierungs-Sequenz. Während das gesättigte Makrolacton-grundgerüst dargestellt werden konnte, schlug die Einführung der Doppelbindung fehl. Es wurde nur ein exo-Methylen-Derivat erhalten. Eine Syntheseroute über eine carbonylierende Kreuzkupplung oder über eine intramolekulare Hydroacylierung verliefen erfolglos. Versuche zum Aufbau des α,β-ungesättigten Enons über das β,γ-ungesättigte Enon in einer Ringschluss-Metathese/Isomerisierungs-Sequenz führten stattdessen zur Bildung eines γ,δ-ungesättigten Ketons und eines 12-Oxo-10,11-dehydrocurvularin-Derivates.rnEine intramolekulare Friedel-Crafts-Acylierung ermöglichte den Ringschluss, sodass die beiden Naturstoffe 4-Dechlor-14-deoxyoxacyclododecindion sowie 14-Deoxyoxa-cyclododecindion synthetisiert werden konnten. Durch die Totalsynthese konnte zudem die bisher unbekannte relative Konfiguration der zwei Stereozentren aufgeklärt werden. Die während dieser Arbeit erhaltenen Derivate ermöglichten es, Struktur-Wirkungs-Beziehungen für diese Makrolactone aufzustellen.rnIn weiteren biologischen Studien von Kooperationspartnern wurde die hohe Wirksamkeit im nanomolaren Konzentrationsbereich bestätigt. Eine erste in vivo-Studie zur Behandlung von systemischem Lupus erythematodes mit 14-Deoxyoxacyclododecindion deutet auf eine verminderte Entzündungsreaktion und positive Effekte auf chronische Nierenschäden hin.rn