849 resultados para Cytokines -- metabolism
Resumo:
The programmed death 1 (PD-1) receptor is a negative regulator of activated T cells and is up-regulated on exhausted virus-specific CD8(+) T cells in chronically infected mice and humans. Programmed death ligand 1 (PD-L1) is expressed by multiple tumors, and its interaction with PD-1 resulted in tumor escape in experimental models. To investigate the role of PD-1 in impairing spontaneous tumor Ag-specific CD8(+) T cells in melanoma patients, we have examined the effect of PD-1 expression on ex vivo detectable CD8(+) T cells specific to the tumor Ag NY-ESO-1. In contrast to EBV, influenza, or Melan-A/MART-1-specific CD8(+) T cells, NY-ESO-1-specific CD8(+) T cells up-regulated PD-1 expression. PD-1 up-regulation on spontaneous NY-ESO-1-specific CD8(+) T cells occurs along with T cell activation and is not directly associated with an inability to produce cytokines. Importantly, blockade of the PD-1/PD-L1 pathway in combination with prolonged Ag stimulation with PD-L1(+) APCs or melanoma cells augmented the number of cytokine-producing, proliferating, and total NY-ESO-1-specific CD8(+) T cells. Collectively, our findings support the role of PD-1 as a regulator of NY-ESO-1-specific CD8(+) T cell expansion in the context of chronic Ag stimulation. They further support the use of PD-1/PD-L1 pathway blockade in cancer patients to partially restore NY-ESO-1-specific CD8(+) T cell numbers and functions, increasing the likelihood of tumor regression.
Resumo:
T-cells specific for foreign (e.g., viral) antigens can give rise to strong protective immune responses, whereas self/tumor antigen-specific T-cells are thought to be less powerful. However, synthetic T-cell vaccines composed of Melan-A/MART-1 peptide, CpG and IFA can induce high frequencies of tumor-specific CD8 T-cells in PBMC of melanoma patients. Here we analyzed the functionality of these T-cells directly ex vivo, by multiparameter flow cytometry. The production of multiple cytokines (IFNγ, TNFα, IL-2) and upregulation of LAMP-1 (CD107a) by tumor (Melan-A/MART-1) specific T-cells was comparable to virus (EBV-BMLF1) specific CD8 T-cells. Furthermore, phosphorylation of STAT1, STAT5 and ERK1/2, and expression of CD3 zeta chain were similar in tumor- and virus-specific T-cells, demonstrating functional signaling pathways. Interestingly, high frequencies of functionally competent T-cells were induced irrespective of patient's age or gender. Finally, CD8 T-cell function correlated with disease-free survival. However, this result is preliminary since the study was a Phase I clinical trial. We conclude that human tumor-specific CD8 T-cells can reach functional competence in vivo, encouraging further development and Phase III trials assessing the clinical efficacy of robust vaccination strategies.
Resumo:
Aquaglyceroporin-9 (AQP9) facilitates diffusion of water and energy substrates such as glycerol and monocarboxylates. AQP9 is present in plasma membrane and mitochondria of astrocytes and catecholaminergic neurons, suggesting that it plays a role in the energetic status of these cells. Using specific small interference RNA directed against AQP9 in astrocyte cultures, we showed that glycerol uptake is decreased which is associated with an increase in glucose uptake and oxidative metabolism. Our results not only confirm the presence of AQP9 in astrocytes but also suggest that changes in AQP9 expression alter glial energy metabolism.
Resumo:
Metabolic homeostasis is achieved by complex molecular and cellular networks that differ significantly among individuals and are difficult to model with genetically engineered lines of mice optimized to study single gene function. Here, we systematically acquired metabolic phenotypes by using the EUMODIC EMPReSS protocols across a large panel of isogenic but diverse strains of mice (BXD type) to study the genetic control of metabolism. We generated and analyzed 140 classical phenotypes and deposited these in an open-access web service for systems genetics (www.genenetwork.org). Heritability, influence of sex, and genetic modifiers of traits were examined singly and jointly by using quantitative-trait locus (QTL) and expression QTL-mapping methods. Traits and networks were linked to loci encompassing both known variants and novel candidate genes, including alkaline phosphatase (ALPL), here linked to hypophosphatasia. The assembled and curated phenotypes provide key resources and exemplars that can be used to dissect complex metabolic traits and disorders.
Resumo:
The closely related TNF family ligands B cell activation factor (BAFF) and a proliferation-inducing ligand (APRIL) serve in the generation and maintenance of mature B-lymphocytes. Both BAFF and APRIL assemble as homotrimers that bind and activate several receptors that they partially share. However, heteromers of BAFF and APRIL that occur in patients with autoimmune diseases are incompletely characterized. The N and C termini of adjacent BAFF or APRIL monomers are spatially close and can be linked to create single-chain homo- or hetero-ligands of defined stoichiometry. Similar to APRIL, heteromers consisting of one BAFF and two APRILs (BAA) bind to the receptors B cell maturation antigen (BCMA), transmembrane activator and CAML interactor (TACI) but not to the BAFF receptor (BAFFR). Heteromers consisting of one APRIL and two BAFF (ABB) bind to TACI and BCMA and weakly to BAFFR in accordance with the analysis of the receptor interaction sites in the crystallographic structure of ABB. Receptor binding correlated with activity in reporter cell line assays specific for BAFFR, TACI, or BCMA. Single-chain BAFF (BBB) and to a lesser extent single-chain ABB, but not APRIL or single-chain BAA, rescued BAFFR-dependent B cell maturation in BAFF-deficient mice. In conclusion, BAFF-APRIL heteromers of different stoichiometries have distinct receptor-binding properties and activities. Based on the observation that heteromers are less active than BAFF, we speculate that their physiological role might be to down-regulate BAFF activity.
Resumo:
This study investigated the regulation of carbohydrate metabolism and glucose uptake through changes in skeletal muscle cell volume. Using an established invitro isolated whole muscle model, soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected from male rats and incubated in an organ bath containing Sigma medium-199 with 8 mM D-glucose altered to target osmolality (hypo-osmotic: HYPO, iso-osmotic: ISO, hyper-osmotic: HYPER; 190, 290, 400 mmol/kg). Muscles were divided into two groups; metabolite (MM) and uptake (MU). MM (N=48) were incubated for 60 minutes and were then immediately flash frozen. MU (N=24) were incubated for 30 minutes and then the extracellular fluid was exchanged for media containing ^H-glucose and ^'*C-mannitol and incubated for another 30 minutes. After the incubation, the muscles were freeze clamped. Results demonstrated a relative water decrease and increase in HYPER and HYPO, respectively. EDL and SOL glucose uptakes were found to be significantly greater in HYPER conditions. The HYPER condition resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and G-6-P) suggesting a catabolic cell state, and an increase in glycogen synthase transformation when compared to the HYPO group. In conclusion, skeletal muscle cell volume alters rates of glucose uptake with further alterations in muscle metabolites and glycogen synthase transformation.
Resumo:
The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).
Resumo:
The purpose of the current investigation was to establish an in-l'itro skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated. whole muscle (SOL and EDL) was dissected from Long Evans rats and incubated for 60 min in Sigma Medium-199 (resting tension (lg). bubbled with 95:5% 02:C02, 30 ± 2°C, and pH 7.4). Media osmolality was altered to simulate hypo-osmotic (190 ± 10 Osm) (HYPO) or hyper-osmotic conditions (400 ± 10 Osm) (HYPER) while an iso-osmotic condition (290± 1 0 Osm) (CON) served as a control (n= 17.19.17). Following incubation, relative muscle water content decreased with HYPER and increased with HYPO in both muscle types (p<0.05). The cross-sectional area of HYPO SOL type I and type II fibres increased (p<0.05) while the EDL type 11 fibre area decreased in HYPER and increascd from HYPO exposure. Furthermore, HYPER exposure in both muscles lead to decreased ATP and phosphocreatine (p<0.05) and increased creatine and lactate (p<0.05) compared to CON. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acutc alterations in muscle water content and resting muscle metabolism.
Resumo:
This study investigated the regulation of carbohydrate metabolism through changes in skeletal muscle cell volume immediately post contraction and during recovery. Using an established in vitro isolated muscle strip model, soleus (SOL) and extensor digitorum longus (EDL) were dissected from male rats and incubated in an organ bath (perfused with 95% O2; 5% CO2, pH 7.4, temperature 25°C) containing medium- 199 altered to a target osmotic condition (iso-, hypo- or hyper-osmotic; 290, 1 80, 400 mmol/kg). Muscles were stimulated for 10 minutes (40 Hz SOL; 30 Hz EDL) and then either immediately flash frozen or allowed to recover for 20 minutes before subsequent metabolite and enzyme analysis. Results demonstrated a relative water decrease in HYPER vs. HYPOosmotic condition (n=8/group; p<0.05) regardless of muscle type. Specifically, the SOL HYPER condition had elevated metabolite concentrations after 10 minutes of stimulation in comparison to both HYPO and ISO (p<0.05), while EDL muscle did not show any significant difTerences between the HYPER or HYPO conditions. After 20 minutes of recovery, metabolic changes occurred in both SOL and EDL with the SOL HYPER condition showing greater relative changes in metabolite concentrations versus HYPO. The results of the current study have demonstrated that osmotic imbalance induces metabolic change within the skeletal muscle cell and muscle type may influence the mechanisms utilized for cell volume regulation.
Resumo:
Fungal metabolism of halogenated and related steroids was investigated. The fungi Aspergillus niger ATCC 9142, Curvularia lunata NRRL 2380 and Rhizopus stolonifer ATCC6227b were studied in this regard. 2l-Fluoro-, 2l-chloro, 2l-bromo- and 2l-methyl-pregn-4-ene-3,20diones were prepared and incubated with ~ niger (a C-2l-hydroxylator) in order to observe the effect of the C-2l substituent on the metabolism of these substrates. In all four cases, the C-2l substituent prevented any significant metabolism of these substrates. llB-Fluoropregn-4-ene-3,20-dione was prepared and incubated with C. lunata (an llB-hydroxylator) and ~ stolonifer (an lla-hydroxylator). With ~ lunata, the ll-fluoro- substituent prevent hydroxylation at the 11 position, but diverted it to a site remote from the fluorine atom. In contrast, with ~ stolonifer the llB-fluoro- substituent, although slowing the apparent rate of hydroxylation, did not prevent its occurrence at the 11a- position. llB-Hydroxypregn-4-ene-3,20-dione was also incubated with R. stolonifer. The llB-hydroxy-;group did not appear to have any significant effect on hydroxylation at the lla- position. The incubation of a substrate, unsaturated at a favoured site of hydroxylation with Rhizopus arrhizus ATCC 11145 provided a complex mixture of products; among them were both the a and S epoxides. The formation of these products is rationalized as arising because of the lack of regio- and stereospecificity of the hydroxylase enzyme(s) involved.
Resumo:
The influence of carbon dioxide on growth and protein synthesis of etiolated Avena coleoptiles was investigated. Evidence is presented that 0.03% carbon dioxide stimulated both these processes; and that carbon dioxide stimulated growth depends on carbon dioxide stimulated protein synthesis, In addition the evidence indicates that carbon dioxide stimulated growth is mediated by metabolism, and that carbon dioxide stimulates growth through a dark fixation process. Growth studies also demonstrated that IAA and carbon dioxide stimulated growth in a synergistic manner.
Resumo:
Cytokines have been shown to cause a reduction in nerve conduction when examined using animal models. Such effects, if shown in humans, could result in detrimental effects to physical function during periods heightened systemic cytokine concentrations. The study investigated the acute effects of cytokines on nerve conduction velocity (NCV) and functional measures. Measures were taken under both basal and elevated cytokine concentrations to determine any corresponding changes to NCV. A significant positive correlation was found between the cytokine IL-6 and NCV at 2 hours post-exercise (r=0.606, p=0.048). A significant negative correlation was found between IL-1ra and NCV at 24 hours post-exercise (r=-0.652, p=0.021). A significant positive correlation was also found between IL-1ra and endurance at 1 hour post-exercise (r=0.643, p=0.033). As such, it would seem that IL-6 may potentially act to enhance nerve function while other cytokines such as IL-1ra may have negative effects and reduce NCV.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 C54 O46 2007
Resumo:
Resveratrol, a polyphenol found naturally in red wines, has attracted great interest in both the scientific community and the general public for its reported ability to protect against many of the diseases facing Western society today. While the purported health effects of resveratrol are well characterized, details of the cellular mechanisms that give rise to these observations are unclear. Here, the mitochondrial antioxidant enzyme Mn superoxide dismutase (MnSOD) was identified as a proximal target of resveratrol in vitro and in vivo. MnSOD protein and activity levels increase significantly in cultured cells treated with resveratrol, and in the brain tissue of mice given resveratrol in a high fat diet. Preventing the increase in MnSOD levels eliminates two of resveratrol’s more interesting effects in the context of human health: inhibition of proliferative cell growth and cytoprotection. Thus, the induction of MnSOD is a critical step in the molecular mechanism of resveratrol. Mitochondrial morphology is a malleable property that is capable of impeding cell cycle progression and conferring resistance against stress induced cell death. Using confocal microscopy and a novel ‘cell free’ fusion assay it was determined that concurrent with changes in MnSOD protein levels, resveratrol treatment leads to a more fused mitochondrial reticulum. This observation may be important to resveratrol’s ability to slow proliferative cell growth and confer cytoprotection. Resveratrol's biological activities, including the ability to increase MnSOD levels, are strikingly similar to what is observed with estrogen treatment. Resveratrol fails to increase MnSOD levels, slow proliferative cell growth and confer cytoprotection in the presence of an estrogen receptor antagonist. Resveratrol's effects can be replicated with the specific estrogen receptor beta agonist diarylpropionitrile, and are absent in myoblasts lacking estrogen receptor beta. Four compounds that are structurally similar to resveratrol and seven phytoestrogens predicted to bind to estrogen receptor beta were screened for their effects on MnSOD, proliferative growth rates and stress resistance in cultured mammalian cells. Several of these compounds were able to mimic the effects of resveratrol on MnSOD levels, proliferative cell growth and stress resistance in vitro. Thus, I hypothesize that resveratrol interacts with estrogen receptor beta to induce the upregulation of MnSOD, which in turn affects cell cycle progression and stress resistance. These results have important implications for the understanding of RES’s biological activities and potential applications to human health.
Resumo:
A low-impact, high-intensity interval exercise (HIE) bout was used to determine whether an association exists between cytokines and bone turnover markers following an acute bout of exercise. Twenty-three recreationally active males (21.8±2.4yr) performed a single HIE bout on a cycle ergometer at 90% relative intensity. Venous blood samples were collected prior to exercise, 5-minutes, 1-hour, and 24-hours post-exercise, and were analyzed for serum levels of pro-inflammatory (IL-6, IL-1α, IL-1β, and TNF-α) and anti- inflammatory cytokines (IL-10) and markers of bone formation (BAP, OPG) and resorption (NTX, RANKL). Significant effects were observed with all bone markers, especially 5-minutes post-exercise with BAP, OPG, and RANKL increasing from baseline (p<0.05). Significant effects were also observed for IL-1α, IL-1β, IL-6, and TNF-α (p<0.00, p=0.04, p=0.03, p<0.00). In addition, post-exercise changes in NTX, BAP, and OPG were significantly correlated pro- and anti-inflammatory cytokines, suggesting that an interaction exists between the immune and skeletal response to exercise.