920 resultados para Cytochrome Reductases


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The neuronal-specific cholesterol 24S-hydroxylase (CYP46A1) is important for brain cholesterol elimination. Cyp46a1 null mice exhibit severe deficiencies in learning and hippocampal long-term potentiation, suggested to be caused by a decrease in isoprenoid intermediates of the mevalonate pathway. Conversely, transgenic mice overexpressing CYP46A1 show an improved cognitive function. These results raised the question of whether CYP46A1 expression can modulate the activity of proteins that are crucial for neuronal function, namely of isoprenylated small guanosine triphosphate-binding proteins (sGTPases). Our results show that CYP46A1 overexpression in SH-SY5Y neuroblastoma cells and in primary cultures of rat cortical neurons leads to an increase in 3-hydroxy-3-methyl-glutaryl-CoA reductase activity and to an overall increase in membrane levels of RhoA, Rac1, Cdc42 and Rab8. This increase is accompanied by a specific increase in RhoA activation. Interestingly, treatment with lovastatin or a geranylgeranyltransferase-I inhibitor abolished the CYP46A1 effect. The CYP46A1-mediated increase in sGTPases membrane abundance was confirmed in vivo, in membrane fractions obtained from transgenic mice overexpressing this enzyme. Moreover, CYP46A1 overexpression leads to a decrease in the liver X receptor (LXR) transcriptional activity and in the mRNA levels of ATP-binding cassette transporter 1, sub-family A, member 1 and apolipoprotein E. This effect was abolished by inhibition of prenylation or by co-transfection of a RhoA dominant-negative mutant. Our results suggest a novel regulatory axis in neurons; under conditions of membrane cholesterol reduction by increased CYP46A1 expression, neurons increase isoprenoid synthesis and sGTPase prenylation. This leads to a reduction in LXR activity, and consequently to a decrease in the expression of LXR target genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Journal of Electroanalytical Chemistry 541 (2003) 153-162

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background/Aims: Unconjugated bilirubin (UCB) impairs crucial aspects of cell function and induces apoptosis in primary cultured neurones. While mechanisms of cytotoxicity begin to unfold, mitochondria appear as potential primary targets. Methods: We used electron paramagnetic resonance spectroscopy analysis of isolated rat mitochondria to test the hypothesis that UCB physically interacts with mitochondria to induce structural membrane perturbation, leading to increased permeability, and subsequent release of apoptotic factors. Results: Our data demonstrate profound changes on mitochondrial membrane properties during incubation with UCB, including modified membrane lipid polarity and fluidity (P , 0:01), as well as disrupted protein mobility(P , 0:001). Consistent with increased permeability, cytochrome c was released from the intermembrane space(P , 0:01), perhaps uncoupling the respiratory chain and further increasing oxidative stress (P , 0:01). Both ursodeoxycholate, a mitochondrial-membrane stabilising agent, and cyclosporine A, an inhibitor of the permeability transition, almost completely abrogated UCB-induced perturbation. Conclusions: UCB directly interacts with mitochondria influencing membrane lipid and protein properties, redox status, and cytochrome c content. Thus, apoptosis induced by UCB may be mediated, at least in part, by physical perturbation of the mitochondrial membrane. These novel findings should ultimately prove useful to our evolving understanding of UCB cytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel water soluble organometallic compound, [RuCp(mTPPMSNa)(2,2'-bipy)][CF3SO3] (TM85, where Cp=eta(5)-cyclopentadienyl, mTPPMS = diphenylphosphane-benzene-3-sulfonate and 2,2'-bipy = 2,2'-bipyridine) is presented herein. Studies of interactions with relevant proteins were performed to understand the behavior and mode of action of this complex in the biological environment. Electrochemical and fluorescence studies showed that TM85 strongly binds to albumin. Studies carried out to study the formation of TM85 which adducts with ubiquitin and cytochrome c were performed by electrospray ionization mass spectrometry (ESI-MS). Antitumor activity was evaluated against a variety of human cancer cell lines, namely A2780, A2780cisR, MCF7, MDAMB231, HT29, PC3 and V79 non-tumorigenic cells and compared with the reference drug cisplatin. TM85 cytotoxic effect was reduced in the presence of endocytosis modulators at low temperatures, suggesting an energy-dependent mechanism consistent with endocytosis. Ultrastructural analysis by transmission electron microscopy (TEM) revealed that TM85 targets the endomembranar system disrupting the Golgi and also affects the mitochondria. Disruption of plasma membrane observed by flow cytometry could lead to cellular damage and cell death. On the whole, the biological activity evaluated herein combined with the water solubility property suggests that complex TM85 could be a promising anticancer agent. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A farmacogenética tem por objetivo a identificação de diferenças genéticas entre indivíduos que possam influenciar a resposta à terapêutica farmacológica, melhorando a sua eficácia e segurança. Associado à farmacogenética surge a “medicina personalizada”, ou seja, em oposição à existência de um fármaco que consiga tratar todos os pacientes, o tratamento individualizado parece o caminho mais promissor, uma vez que reduz o risco de reações adversas por toxicidade (segurança), adequa a dose ao indivíduo, evitando excessos ou défices (dose) e evita a metodologia de tentativa erro na escolha do fármaco (eficácia). A farmacogenética é relevante para a resposta individual ao fármaco por duas vias distintas: a farmacocinética e a farmacodinâmica. A variabilidade genética pode afetar a forma como um fármaco pode ser absorvido, ativado, metabolizado ou excretado, podendo conduzir assim a uma variabilidade na resposta. De entre o número infindável de possíveis exemplos, nesta revisão apresentam-se exemplos relacionados com os genes do Citocromo P450, do gene NAT2 e do gene da Colinesterase. As diferenças genéticas entre os indivíduos podem ainda afetar a resposta ao fármaco pela sua farmacodinâmica, ou seja, a resposta específica do alvo ao fármaco. De entre a multiplicidade de alvos de fármacos existentes serão apresentados exemplos do gene da G6PD e do VKORC1. Apesar de alguns dados científicos indicarem benefício para o paciente, ainda está longe de a farmacogenética fazer parte da prática clínica de rotina, talvez porque os custos-benefícios ainda não foram avaliados de forma precisa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Bioquímica,especialidade Bioquímica-Física, pela Universidade Nova de Lisboa, Faculdade de Cincias e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Biológica – especialidade Engenharia Genética, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioquímica, Especialidade Bioquímica Estrutural

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sensors 2010, 10, 11530-11555

Relevância:

10.00% 10.00%

Publicador:

Resumo:

40 Echinococcus isolates from sheep and cattle in Southern Brazil were genetically analysed in order to obtain further data on the presence of different taxa of the Echinococcus granulosus complex. Differentiation was done using a PCR technique and sequencing of mitochondrial cytochrome c oxidase subunit 1 (CO1). Most samples (38) could be allocated to the sheep strain (G1) of E. granulosus, while two samples belonged to E. ortleppi, previously known as cattle strain (G5) of E. granulosus. Due to the shorter prepatent period in dogs of the latter taxon, this records have important implications for the design of control measures in this endemic region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural toxins such as those produced by freshwater cyanobacteria have been regarded as an emergent environmental threat. However, the impact of these water contaminants in agriculture is not yet fully understood. The aim of this work was to investigate microcystin-LR (MC-LR) toxicity in Lycopersicon esculentum and the toxin accumulation in this horticultural crop. Adult plants (2 month-old) grown in a greenhouse environment were exposed for 2 weeks to either pure MC-LR (100 μg/L) or Microcystis aeruginosa crude extracts containing 100 μg/L MC-LR. Chlorophyll fluorescence was measured, leaf proteome investigated with two-dimensional gel electrophoresis and Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF)/TOF, and toxin bioaccumulation assessed by liquid chromatography-mass spectrometry (LC-MS)/MS. Variations in several protein markers (ATP synthase subunits, Cytochrome b6-f complex iron-sulfur, oxygen-evolving enhancer proteins) highlight the decrease of the capacity of plants to synthesize ATP and to perform photosynthesis, whereas variations in other proteins (ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit and ribose-5-phosphate isomerase) suggest an increase of carbon fixation and decrease of carbohydrate metabolism reactions in plants exposed to pure MC-LR and cyanobacterial extracts, respectively. MC-LR was found in roots (1635.21 μg/kg fw), green tomatoes (5.15–5.41 μg/kg fw), mature tomatoes (10.52–10.83 μg/kg fw), and leaves (12,298.18 μg/kg fw). The results raise concerns relative to food safety and point to the necessity of monitoring the bioaccumulation of water toxins in agricultural systems affected by cyanotoxin contamination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2011) 16:1241–1254 DOI 10.1007/s00775-011-0812-9

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J Biol Inorg Chem (2011) 16:209–215 DOI 10.1007/s00775-010-0717-z