953 resultados para Cyclic voltammograms
Resumo:
Bacterial infections, especially the ones that are caused by multidrug-resistant strains, are becoming increasingly difficult to treat and put enormous stress on healthcare systems. Recently President Obama announced a new initiative to combat the growing problem of antibiotic resistance. New types of antibiotic drugs are always in need to catch up with the rapid speed of bacterial drug-resistance acquisition. Bacterial second messengers, cyclic dinucleotides, play important roles in signal transduction and therefore are currently generating great buzz in the microbiology community because it is believed that small molecules that inhibit cyclic dinucleotide signaling could become next-generation antibacterial agents. The first identified cyclic dinucleotide, c-di-GMP, has now been shown to regulate a large number of processes, such as virulence, biofilm formation, cell cycle, quorum sensing, etc. Recently, another cyclic dinucleotide, c-di-AMP, has emerged as a regulator of key processes in Gram-positive and mycobacteria. C-di-AMP is now known to regulate DNA damage sensing, fatty acid synthesis, potassium ion transport, cell wall homeostasis and host type I interferon response induction. Due to the central roles that cyclic dinucleotides play in bacteria, we are interested in small molecules that intercept cyclic dinucleotide signaling with the hope that these molecules would help us learn more details about cyclic dinucleotide signaling or could be used to inhibit bacterial viability or virulence. This dissertation documents the development of several small molecule inhibitors of a cyclic dinucleotide synthase (DisA from B. subtilis) and phosphodiesterases (RocR from P. aeruginosa and CdnP from M. tuberculosis). We also demonstrate that an inhibitor of RocR PDE can inhibit bacterial swarming motility, which is a virulence factor.
Resumo:
Bis-(3´-5´)-cyclic dimeric guanosine monophosphate, or cyclic di-GMP (c-di-GMP) is a ubiquitous bacterial second messenger that regulates processes such biofilm formation, motility, and virulence. C-di-GMP is synthesized by diguanylate cyclases (DGCs), while phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG), which is then hydrolyzed to two GMPs by previously unidentified enzymes termed PDE-Bs. To identify the PDE-B responsible for pGpG turnover, a screen for pGpG binding proteins in a Vibrio cholerae open reading frame library was conducted to identify potential pGpG binding proteins. This screen led to identification of oligoribonuclease (Orn). Purified Orn binds to pGpG and can cleave pGpG to GMP in vitro. A deletion mutant of orn in Pseudomonas aeruginosa was highly defective in pGpG turnover and accumulated pGpG. Deletion of orn also resulted in accumulation c-di-GMP, likely through pGpG-mediated inhibition of the PDE-As, causing an increase in c-di-GMP-governed auto-aggregation and biofilm. Thus, we found that Orn serves as the primary PDE-B enzyme in P. aeruginosa that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway. However, not all bacteria that utilize c-di-GMP signaling also have an ortholog of orn, suggesting that other PDE-Bs must be present. Therefore, we asked whether RNases that cleave small oligoribonucleotides in other species could also act as PDE-Bs. NrnA, NrnB, and NrnC can rapidly degrade pGpG to GMP. Furthermore, they can reduce the elevated aggregation and biofilm formation in P. aeruginosa ∆orn. Together, these results indicate that rather than having a single dedicated PDE-B, different bacteria utilize distinct RNases to cleave pGpG and complete c-di-GMP signaling. The ∆orn strain also has a growth defect, indicating changes in other regulatory processes that could be due to pGpG accumulation, c-di-GMP accumulation, or another effect due to loss of Orn. We sought to investigate the genetic pathways responsible for these growth defect phenotypes by use of a transposon suppressor screen, and also investigated transcriptional changes using RNA-Seq. This work identifies that c-di-GMP degradation intersects with RNA degradation at the point of the Orn and the functionally related RNases.
Resumo:
The topic of this thesis is the application of distributive laws between comonads to the theory of cyclic homology. The work herein is based on the three papers 'Cyclic homology arising from adjunctions', 'Factorisations of distributive laws', and 'Hochschild homology, lax codescent,and duplicial structure', to which the current author has contributed. Explicitly, our main aims are: 1) To study how the cyclic homology of associative algebras and of Hopf algebras in the original sense of Connes and Moscovici arises from a distributive law, and to clarify the role of different notions of bimonad in this generalisation. 2) To extend the procedure of twisting the cyclic homology of a unital associative algebra to any duplicial object defined by a distributive law. 3) To study the universality of Bohm and Stefan’s approach to constructing duplicial objects, which we do in terms of a 2-categorical generalisation of Hochschild (co)homology. 4) To characterise those categories whose nerve admits a duplicial structure.
Resumo:
In this work a system of autonomous agents engaged in cyclic pursuit (under constant bearing (CB) strategy) is considered, for which one informed agent (the leader) also senses and responds to a stationary beacon. Building on the framework proposed in a previous work on beacon-referenced cyclic pursuit, necessary and suffi- cient conditions for the existence of circling equilibria in a system with one informed agent are derived, with discussion of stability and performance. In a physical testbed, the leader (robot) is equipped with a sound sensing apparatus composed of a real time embedded system, estimating direction of arrival of sound by an Interaural Level and Phase Difference Algorithm, using empirically determined phase and level signatures, and breaking front-back ambiguity with appropriate sensor placement. Furthermore a simple framework for implementing and evaluating the performance of control laws with the Robot Operating System (ROS) is proposed, demonstrated, and discussed.
Resumo:
Branching tube flow is a common feature of many fields of science and technology, and occurs both in animate and inanimate systems [1]. The transport of aerosol particles is of particular importance in industrial flow networks but also for the respiratory tree [2]. In this analysis a 3-D numerical study is performed to investigate transport and deposition of aerosol particles in branching tubes. Bifurcation tubes designed according to Hess-Murray law [3] but with different branching angles are analyzed. This study covers cyclic flow conditions at frequencies of 0.25 Hz, 0.50 Hz and 0.75 Hz, Stokes numbers ranging between 0.03 and 0.25, and Reynolds numbers up to 3000.
Resumo:
International audience
Resumo:
© IMechE 2014. Controlled auto-ignition, also known as homogeneous charge compression ignition, has been the subject of extensive research because of their ability to provide simultaneous reductions in fuel consumption and NOx emissions from a gasoline engine. However, due to its limited operation range, switching between controlled auto-ignition and spark ignition combustion is needed to cover the complete operating range of a gasoline engine for passenger car applications. Previous research has shown that the spark ignition -controlled auto-ignition hybrid combustion (SCHC) has the potential to control the ignition timing and heat release process during the mode transition operations. However, it was found that the SCHC is often characterized with large cycle-to-cycle variations. The cyclic variations in the in-cylinder pressure are particularly noticeable in terms of both their peak values and timings while the coefficient of variation in the indicated mean effective pressure is much less. In this work, the cyclic variations in SCHC operations were analyzed by means of in-cylinder pressure and heat release analysis in a single-cylinder gasoline engine equipped with Variable Valve Actuation (VVA) systems. First, characteristics of the in-cylinder pressure traces during the spark ignition-controlled auto-ignition hybrid combustion operation are presented and their heat release processes analyzed. In order to clarify the contribution to heat release and cyclic variation in SCHC, a new method is introduced to identify the occurrence of auto-ignition combustion and its subsequent heat release process. Based on the new method developed, the characteristics of cyclic variations in the maximum rate of pressure rise and different stages of heat release process have been analyzed and discussed.
Resumo:
K48-linked di-ubiquitin exists in a dynamic equilibrium between open and closed states. The structure of K48-Ub2 in the closed conformation features a hydrophobic interface formed between the two Ub domains. The same hydrophobic residues at the interface are involved in binding to ubiquitin-associated (UBA) domains. Cyclization of K48-Ub2 should limit the range of conformations available for such interactions. Interestingly, cyclic K48-linked Ub2 (cycUb2) has been found in vivo and can be isolated in vitro to study its structure and dynamics. In this study, a crystal structure of cycUb2 was obtained, and the dynamics of cycUb2 were characterized by solution NMR. The crystal structure of cycUb2, which is in agreement with solution NMR data, is closed with the hydrophobic patches of each Ub domain buried at the interface. Despite its structural constraints, cycUb2 was still able to interact with UBA domains, albeit with lower affinity.
Resumo:
Oligophenylenes (polyphenylenes) are constituted by an array of conjugated benzenes where inter-ring electron delocalization tends to extend over the whole chain (linear conjugation) being intrinsically limited, among other factors, by terminal effects. Alternatively, cyclic conjugation is envisaged as the unlimited free-boundary versionofconjugation which will impact the structure of molecules in rather unknown ways. The cyclic version of oligophenylenes, cycloparaphenylenes ([n]CPPs with n the number of phenyl rings) were first synthesized in 2008 by Beztozzi and Jasti.1 Today the whole [n]CPP series from [5]CPP to [18]CPP has been prepared. [n]CPPs represent ideal models to investigate new insights of the electronic structure of molecules and cyclic conjugation when electrons or charges circulate in a closed circuit without boundaries. Radical cations and dications of [n]CPP from n=5 to n=12 have been prepared and studied by Raman spectroscopy.2 Small [n]CPP dications own their stability to the closed-shell electronic configuration imposed by cyclic conjugation. However, in large [n]CPP dications cyclic conjugation is minimal and these divalent species form open-shell biradicals. The Raman spectra reflect the effect of cyclic conjugation in competition with cyclic strain and biradicaloid aromatic stabilization. Cyclic conjugation provokes the existence of a turning point or V-shape behavior of the frequencies of the G bands as a function of n. In this communication we will show the vibrational spectroscopic fingerprint of this rare form of conjugation. [1] R. Jasti, J. Bhattacharjee, J. B. Neaton, C. R. Bertozzi, “Synthesis, Characterization, and Theory of [9]-, [12]-, and [18]Cycloparaphenylene: Carbon Nanohoop Structures”, J. Am. Chem. Soc. 130 (2008), 17646–17647. [2] M. P. Alvarez, P. M. Burrezo, M. Kertesz, T. Iwamoto, S. Yamago, J. Xia, R. Jasti, J. T. L. Navarrete, M. Taravillo, V. G. Baonza, J. Casado, “Properties of Sizeable [n]CycloParaPhenylenes As Molecular Models of Single-Wall Carbon Nanotubes By Raman Spectroscopy: Structural and Electron-Transfer Responses Under Mechanical Stress”, Angew. Chem. Int. Ed. 53, (2014), 7033−7037.
Resumo:
Cyclic di-GMP was the first cyclic di-nucleotide second messenger described, presaging the discovery of additional cyclic di-nucleotide messengers in bacteria and eukaryotes. The GGDEF diguanylate cyclase (DGC) and EAL and HD-GYP phosphodiesterase (PDE) domains conduct the turnover of cyclic di-GMP. These three unrelated domains belong to superfamilies that exhibit significant variations in function, to include both enzymatically active and inactive members with a subset involved in synthesis and degradation of other cyclic di-nucleotides. Here we summarize current knowledge of sequence and structural varitions that underpin the functional diversification of cyclic di-GMP turnover proteins. Moreover, we highlight that superfamily diversification is not restricted to cyclic di-GMP signaling domains, as particular DHH/DHHA1 domain and HD domain proteins have been shown to act as cyclic di-AMP phosphodiesterases. We conclude with a consideration of the current limitations that such diversity of action places on bioinformatic prediction of the roles of GGDEF, EAL and HD-GYP domain proteins.
Resumo:
The reinforcement methods used to restore or increase the bearing capacity of metal structures are based on the application of steel plates to be bolted or welded to the original structure, which can cause problems to the integrity of the original structure. These difficulties can be overcome with the introduction of fiber-reinforced composite materials. FRPs are characterized by high strength to weight ratio, and they are very resistant to corrosion. In this dissertation a cracked steel I-beam reinforced with Carbon Fiber-Reinforced Polymer will be studied by performing a numerical evaluation of the structure with the commercial Finite Element Method software ABAQUS. The crack propagation will be computed using XFEM, while the debonding of the reinforcement layer will be found by considering a cohesive contact interface between the beam and the CFRP plate. The results will show the efficiency of the strengthening method in increasing the load carrying capacity of the cracked beam, and in reducing the crack opening of the initial notch.
Resumo:
The main research topic of the present master thesis consisted in the modification and electrochemical testing of inkjet printed graphene electrodes with a thin polymeric hydrogel layer made of cross-linked poly(N-isopropylacrylamide) (PNIPAAM) acting as a functional layer to fabricate selective sensors. The first experimental activities dealt with the synthesis of the polymeric hydrogel and the modification of the active surface of graphene sensors through photopolymerization. Simultaneous inkjet printing and photopolymerization of the hydrogel precursor inks onto graphene demonstrated to be the most effective and reproducible technique for the modification of the electrode with PNIPAAM. The electrochemical performance of the modified electrodes was tested through cyclic voltammetry. Voltammograms with standard redox couples with either positive, neutral or negative charges, suggested an electrostatic filtering effect by the hydrogel blocking negatively charged redox species in near neutral pH electrolyte solutions from reaching the electrode surface. PNIPAAM is a known thermo-responsive polymer, but the variation of temperature did not influence the filtering properties of the hydrogels for the redox couples studied. However, a variation of the filter capacity of the material was observed at pH 2 in which the PNIPAAM hydrogel, most likely in protonated form, became impermeable to positively charged redox species and permeable to negatively charged species. Finally, the filtering capacity of the electrodes modified with PNIPAAM was evaluated for the electrochemical determination of analytes in presence of negatively charge potential interferents, such as antioxidants like ascorbic acid. The outcome of the final experiments suggested the possibility to use the inkjet-printed PNIPAAM thin layer for electroanalytical applications as an electrostatic filter against interferents of opposite charges, typically present in complex matrices, such as food and beverages.
Resumo:
Migraine equivalents are a group of periodic and paroxysmal neurologic diseases. Because headache is not a prominent symptom, the diagnosis might be challenging. The objective of the study was to evaluate the frequency and outcome of migraine equivalents. This was a retrospective study. We included benign paroxysmal torticollis of infancy, benign paroxysmal vertigo of infancy, abdominal migraine, cyclic vomiting, aura without migraine, and confusional migraine. We evaluated the frequency of events, treatment, and outcome. Out of 674 children with headache, 38 (5.6%) presented with migraine equivalents. Twenty-one were boys and the mean age was 6.1 years. Fifteen had abdominal migraine, 12 benign paroxysmal vertigo, 5 confusional migraine, 3 aura without migraine, 2 paroxysmal torticollis, and 1 cyclic vomiting. Prophylactic treatment was introduced in 23 patients; 4 lost follow-up and 19 had significant improvement. We conclude that the correct diagnosis of migraine equivalents enables an effective treatment with an excellent outcome.
Resumo:
One of the great challenges of the scientific community on theories of genetic information, genetic communication and genetic coding is to determine a mathematical structure related to DNA sequences. In this paper we propose a model of an intra-cellular transmission system of genetic information similar to a model of a power and bandwidth efficient digital communication system in order to identify a mathematical structure in DNA sequences where such sequences are biologically relevant. The model of a transmission system of genetic information is concerned with the identification, reproduction and mathematical classification of the nucleotide sequence of single stranded DNA by the genetic encoder. Hence, a genetic encoder is devised where labelings and cyclic codes are established. The establishment of the algebraic structure of the corresponding codes alphabets, mappings, labelings, primitive polynomials (p(x)) and code generator polynomials (g(x)) are quite important in characterizing error-correcting codes subclasses of G-linear codes. These latter codes are useful for the identification, reproduction and mathematical classification of DNA sequences. The characterization of this model may contribute to the development of a methodology that can be applied in mutational analysis and polymorphisms, production of new drugs and genetic improvement, among other things, resulting in the reduction of time and laboratory costs.