989 resultados para Crime detection
Detection of five seedborne legume viruses in one sensitive multiplex polymerase chain reaction test
Resumo:
The Modicon Communication Bus (Modbus) protocol is one of the most commonly used protocols in industrial control systems. Modbus was not designed to provide security. This paper confirms that the Modbus protocol is vulnerable to flooding attacks. These attacks involve injection of commands that result in disrupting the normal operation of the control system. This paper describes a set of experiments that shows that an anomaly-based change detection algorithm and signature-based Snort threshold module are capable of detecting Modbus flooding attacks. In comparing these intrusion detection techniques, we find that the signature-based detection requires a carefully selected threshold value, and that the anomaly-based change detection algorithm may have a short delay before detecting the attacks depending on the parameters used. In addition, we also generate a network traffic dataset of flooding attacks on the Modbus control system protocol.
Resumo:
Sharing some closely related themes and a common theoretical orientation based on the governmentality analytic, these are nevertheless two very different contributions to criminological knowledge and theory. The first, The Currency of Justice: Fines and Damages in Consumer Societies (COJ), is a sustained and highly original analysis of that most pervasive yet overlooked feature of modern legal orders; their reliance on monetary sanctions. Crime and Risk (CAR), on the other hand, is a short synoptic overview of the many dimensions and trajectories of risk in contemporary debate and practice, both the practices of crime and the governance of crime. It is one of the first in a new series by Sage, 'Compact Criminology', in which authors survey in little more than a hundred pages some current field of debate. With this small gem, Pat O'Malley has set the bar very high for those who follow. For all its brevity, CAR traverses a massive expanse of research, debates and issues, while also opening up new and challenging questions around the politics of risk and the relationship between criminal risk-taking and the governance of risk and crime. The two books draw together various threads of O'Malley's rich body of work on these issues, and once again demonstrate that he is one of the foremost international scholars of risk inside and outside criminology.
Resumo:
Since the nineteenth century, drug use has been variously understood as a problem of epidemiology, psychiatry, physiology, and criminality. Consequently drug research tends to be underpinned by assumptions of inevitable harm, and is often directed towards preventing drug use or solving problems. These constructions of the drug problem have generated a range of law enforcement responses, drug treatment technologies and rehabilitative programs that are intended to prevent drug related harm and resituate drug users in the realm of neo-liberal functional citizenship. This paper is based on empirical research of young people’s illicit drug use in Brisbane. The research rejects the idea of a pre-given drug problem, and seeks to understand how drugs have come to be defined as a problem. Using Michel Foucault’s conceptual framework of governmentality, the paper explores how the governance of illicit drugs, through law, public health and medicine, intersects with self-governance to shape young people’s drug use practices. It is argued that constructions of the drug problem shape what drug users believe about themselves and the ways in which they use drugs. From this perspective, drug use practices are ‘practices of the self’, formed through an interaction of the government of illicit drugs and the drug users own subjectivity.
Resumo:
Design of hydraulic turbines has often to deal with hydraulic instability. It is well-known that Francis and Kaplan types present hydraulic instability in their design power range. Even if modern CFD tools may help to define these dangerous operating conditions and optimize runner design, hydraulic instabilities may fortuitously arise during the turbine life and should be timely detected in order to assure a long-lasting operating life. In a previous paper, the authors have considered the phenomenon of helical vortex rope, which happens at low flow rates when a swirling flow, in the draft tube conical inlet, occupies a large portion of the inlet. In this condition, a strong helical vortex rope appears. The vortex rope causes mechanical effects on the runner, on the whole turbine and on the draft tube, which may eventually produce severe damages on the turbine unit and whose most evident symptoms are vibrations. The authors have already shown that vibration analysis is suitable for detecting vortex rope onset, thanks to an experimental test campaign performed during the commissioning of a 23 MW Kaplan hydraulic turbine unit. In this paper, the authors propose a sophisticated data driven approach to detect vortex rope onset at different power load, based on the analysis of the vibration signals in the order domain and introducing the so-called "residual order spectrogram", i.e. an order-rotation representation of the vibration signal. Some experimental test runs are presented and the possibility to detect instability onset, especially in real-time, is discussed.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and develops a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning in network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions
Resumo:
It has been recognized for some time that the liberalization of trade policies has had deleterious impacts on the world’s natural environment. The rapid expansion of globalized goods and services continues to create a human footprint with longlasting environmental consequences (White 2010). It is a footprint that represents rapid human activity and with it has come new commercial opportunities, not only for global businesses but also for organized criminal networks. Both the acceleration and by-products of global trade have created new markets as well as underground economies. As the opening quotation reveals, transnational environmental crime must become a policing priority as organized criminal...
Resumo:
Suspension bridges meet the steadily growing demand for lighter and longer bridges in today’s infrastructure systems. These bridges are designed to have long life spans, but with age, their main cables and hangers could suffer from corrosion and fatigue. There is a need for a simple and reliable procedure to detect and locate such damage, so that appropriate retrofitting can be carried out to prevent bridge failure. Damage in a structure causes changes in its properties (mass, damping and stiffness) which in turn will cause changes in its vibration characteristics (natural frequencies, modal damping and mode shapes). Methods based on modal flexibility, which depends on both the natural frequencies and mode shapes, have the potential for damage detection. They have been applied successfully to beam and plate elements, trusses and simple structures in reinforced concrete and steel. However very limited applications for damage detection in suspension bridges have been identified to date. This paper examines the potential of modal flexibility methods for damage detection and localization of a suspension bridge under different damage scenarios in the main cables and hangers using numerical simulation techniques. Validated finite element model (FEM) of a suspension bridge is used to acquire mass normalized mode shape vectors and natural frequencies at intact and damaged states. Damage scenarios will be simulated in the validated FE models by varying stiffness of the damaged structural members. The capability of damage index based on modal flexibility to detect and locate damage is evaluated. Results confirm that modal flexibility based methods have the ability to successfully identify damage in suspension bridge main cables and hangers.
Resumo:
Cable structures find many applications such as in power transmission, in anchors and especially in bridges. They serve as major load bearing elements in suspension bridges, which are capable of spanning long distances. All bridges, including suspension bridges, are designed to have long service lives. However, during this long life, they become vulnerable to damage due to changes in loadings, deterioration with age and random action such as impacts. The main cables are more vulnerable to corrosion and fatigue, compared to the other bridge components, and consequently reduces the serviceability and ultimate capacity of the bridge. Detecting and locating such damage at the earliest stage is challenging in the current structural health monitoring (SHM) systems of long span suspension bridges. Damage or deterioration of a structure alters its stiffness, mass and damping properties which in turn modify its vibration characteristics. This phenomenon can therefore be used to detect damage in a structure. The modal flexibility, which depends on the vibration characteristics of a structure, has been identified as a successful damage indicator in beam and plate elements, trusses and simple structures in reinforced concrete and steel. Successful application of the modal flexibility phenomenon to detect and locate the damage in suspension bridge main cables has received limited attention in recent research work. This paper, therefore examines the potential of the modal flexibility based Damage Index (DI) for detecting and locating damage in the main cable of a suspension bridge under four different damage scenarios. Towards this end, a numerical model of a suspension bridge cable was developed to extract the modal parameters at both damaged and undamaged states. Damage scenarios considered in this study with varied location and severity were simulated by changing stiffness at particular locations of the cable model. Results confirm that the DI has the potential to successfully detect and locate damage in suspension bridge main cables. This simple method can therefore enable bridge engineers and managers to detect and locate damage in suspension bridges at an early stage, minimize expensive retrofitting and prevent bridge collapse.
Resumo:
Victim/survivors of human trafficking involving partner migration employ diverse help-seeking strategies, both formal and informal, to exit their exploitative situations. Drawing on primary research conducted by Lyneham and Richards (forthcoming), the authors highlight the importance of educating the community and professionals from a wide range of sectors—including health, mental health, child protection, social welfare, social work, domestic violence, migration, legal and law enforcement services—about human trafficking and the help-seeking strategies of victims/survivors in order to support them to leave exploitative situations. Enhancing Australia’s knowledge of victim/survivors’ help-seeking strategies will better inform government and community responses to this crime, improve detection and identification of human trafficking matters and subsequent referral to appropriate victim services.