1000 resultados para Corrugated Fibre Company, Dayton, O.
Resumo:
The spinning off of Cambridge Semiconductor Ltd (Camsemi) from the High Voltage Microelectronics Lab at Cambridge University is discussed. The technology originated from Cambridge University and was subsequently developed and commercialized as PowerBrane by Camsemi. The paper also discusses the business model and the enabling financial factors that led to the formation of Camsemi as a fables IC company, including access to seed funding from University and the subsequent investments of venture capital in several rounds. © 2011 IEEE.
Resumo:
The compressive behaviour of finite unidirectional composites with a region of misaligned reinforcement is investigated via finite element analyses. Models with and without fibre bending stiffness are compared, confirming that compressive strength is accurately predicted without modelling fibre bending stiffness for real composite components which typically have waviness defects of several millimetres wavelength. Various defect parameters are investigated. Results confirm the well-known sensitivity of compressive strength to misalignment angle, and also show that compressive strength falls rapidly with the proportion of laminate width covered by the wavy region. A simple empirical equation is proposed to model the effect of a single patch of waviness in finite specimens. Other parameters such as length and position of the wavy region are found to have a smaller effect on compressive strength. The modelling approach is finally adapted to model distributed waviness and thus determine the compressive strength of composites with realistic waviness defects. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The use of fiber-reinforced polymer (FRP) shear strengthening systems for the strength enhancement of existing reinforced concrete structures is discussed. An experimental and analytical research programme is under way to investigate the performance of bonded passive and unbonded prestressed FRP shear systems, and to quantify the effect of the load history on the strengthed behavior. Non-linear finite-element analysis are being developed to model the strengthed behavior. The results will provide insight into the optimum system parameters and contribute to the formulation of design guidance for advanced FRP strengthing strategies.
Resumo:
A binary grating on a Spatial Light Modulator generates twin antiphase spots with adjustable positions across the core of a multimode fibre allowing adaptive excitation of antisymmetric mode-groups for improving modal dispersion or modal multiplexing. © 2011 IEEE.
Resumo:
The dramatic increase in hole quality on single crystalline silicon with an 1 μm fiber laser has been reported recently, it redefines the processing options for Si at that wavelength. This study investigated the effects of the MOPA based pulse tuning on the changes of the machined depth and the mass removal mechanism for the generation of microvia holes. Hole depths were measured and surface morphology studied using SEM and optical interferometric profilometry. The pulse peak power was found to strongly influence the material removal mechanism with fixed pulse duration. High peak powers (>1 kW) gave vaporization dominated ablation, left a limited re solidified molten layer and clean hole formation. The pulse duration was found to strongly influence the machined depth. Longer pulse durations generated deeper holes with constant peak power (>1 kW). In comparison with the DPSS UV laser, the IR fiber laser of longer pulse durations machined deeper holes and generated less resolidifed melt beyond the hole rim at high fluencies. The comparison suggests that some applications (microvia drilling) of the DPSS UV laser can be replaced with the more flexible, low cost IR fiber laser. © KSPE and Springer 2012.
Resumo:
An innovative technique based on optical fibre sensing that allows continuous strain measurement has recently been introduced in structural health monitoring. Known as Brillouin Optical Time-Domain Reflectometry (BOTDR), this distributed optical fibre sensing technique allows measurement of strain along the full length (up to 10km) of a suitably installed optical fibre. Examples of recent implementations of BOTDR fibre optic sensing in piles are described in this paper. Two examples of distributed optical fibre sensing in piles are demonstrated using different installation techniques. In a load bearing pile, optical cables were attached along the reinforcing bars by equally spaced spot gluing to measure the axial response of pile to ground excavation induced heave and construction loading. Measurement of flexural behaviour of piles is demonstrated in the instrumentation of a secant piled wall where optical fibres were embedded in the concrete by simple endpoint clamping. Both methods have been verified via laboratory works. © 2009 IOS Press.
Resumo:
A Spatial Light Modulator and a non-specialized multimode coupler are used together to provide sufficient channel isolation and modal bandwidth for 2x12.5Gbps NRZ over 2km of standard graded-index multimode fibre without DSP. © 2012 IEEE.
Resumo:
A second harmonic suppression scheme allowing RoF links to support communications and passive UHF RFID is reviewed. Using RoF distributed antenna system techniques, the coverage and location accuracy of passive UHF RFID are significantly improved.
Resumo:
Deterministic organization of nanostructures into microscale geometries is essential for the development of materials with novel mechanical, optical, and surface properties. We demonstrate scalable fabrication of 3D corrugated carbon nanotube (CNT) microstructures, via an iterative sequence of vertically aligned CNT growth and capillary self-assembly. Vertical microbellows and tilted microcantilevers are created over large areas, and these structures can have thin walls with aspect ratios exceeding 100:1. We show these structures can be used as out-of-plane microsprings with compliance determined by the wall thickness and number of folds. © 2011 American Chemical Society.