939 resultados para Constraint programming


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a promising method for pattern recognition and function estimation, least squares support vector machines (LS-SVM) express the training in terms of solving a linear system instead of a quadratic programming problem as for conventional support vector machines (SVM). In this paper, by using the information provided by the equality constraint, we transform the minimization problem with a single equality constraint in LS-SVM into an unconstrained minimization problem, then propose reduced formulations for LS-SVM. By introducing this transformation, the times of using conjugate gradient (CG) method, which is a greatly time-consuming step in obtaining the numerical solution, are reduced to one instead of two as proposed by Suykens et al. (1999). The comparison on computational speed of our method with the CG method proposed by Suykens et al. and the first order and second order SMO methods on several benchmark data sets shows a reduction of training time by up to 44%. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel framework for dense pixel matching based on dynamic programming is introduced. Unlike most techniques proposed in the literature, our approach assumes neither known camera geometry nor the availability of rectified images. Under such conditions, the matching task cannot be reduced to finding correspondences between a pair of scanlines. We propose to extend existing dynamic programming methodologies to a larger dimensional space by using a 3D scoring matrix so that correspondences between a line and a whole image can be calculated. After assessing our framework on a standard evaluation dataset of rectified stereo images, experiments are conducted on unrectified and non-linearly distorted images. Results validate our new approach and reveal the versatility of our algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of multicore processors is bound to drive most kinds of software development towards parallel programming. To limit the difficulty and overhead of parallel software design and maintenance, it is crucial that parallel programming models allow an easy-to-understand, concise and dense representation of parallelism. Parallel programming models such as Cilk++ and Intel TBBs attempt to offer a better, higher-level abstraction for parallel programming than threads and locking synchronization. It is not straightforward, however, to express all patterns of parallelism in these models. Pipelines are an important parallel construct, although difficult to express in Cilk and TBBs in a straightfor- ward way, not without a verbose restructuring of the code. In this paper we demonstrate that pipeline parallelism can be easily and concisely expressed in a Cilk-like language, which we extend with input, output and input/output dependency types on procedure arguments, enforced at runtime by the scheduler. We evaluate our implementation on real applications and show that our Cilk-like scheduler, extended to track and enforce these dependencies has performance comparable to Cilk++.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new laboratory-based module for embedded systems teaching, which addresses the current lack of consideration for the link between hardware development, software implementation, course content and student evaluation in a laboratory environment. The course introduces second year undergraduate students to the interface between hardware and software and the programming of embedded devices; in this case, the PIC (originally peripheral interface controller, later rebranded programmable intelligent computer) microcontroller. A hardware development board designed for use in the laboratories of this module is presented. Through hands on laboratory experience, students are encouraged to engage with practical problem-solving exercises and develop programming skills across a broad range of scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many scientific applications are programmed using hybrid programming models that use both message passing and shared memory, due to the increasing prevalence of large-scale systems with multicore, multisocket nodes. Previous work has shown that energy efficiency can be improved using software-controlled execution schemes that consider both the programming model and the power-aware execution capabilities of the system. However, such approaches have focused on identifying optimal resource utilization for one programming model, either shared memory or message passing, in isolation. The potential solution space, thus the challenge, increases substantially when optimizing hybrid models since the possible resource configurations increase exponentially. Nonetheless, with the accelerating adoption of hybrid programming models, we increasingly need improved energy efficiency in hybrid parallel applications on large-scale systems. In this work, we present new software-controlled execution schemes that consider the effects of dynamic concurrency throttling (DCT) and dynamic voltage and frequency scaling (DVFS) in the context of hybrid programming models. Specifically, we present predictive models and novel algorithms based on statistical analysis that anticipate application power and time requirements under different concurrency and frequency configurations. We apply our models and methods to the NPB MZ benchmarks and selected applications from the ASC Sequoia codes. Overall, we achieve substantial energy savings (8.74 percent on average and up to 13.8 percent) with some performance gain (up to 7.5 percent) or negligible performance loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approach to the management of non-functional concerns in massively parallel and/or distributed architectures that marries parallel programming patterns with autonomic computing is presented. The necessity and suitability of the adoption of autonomic techniques are evidenced. Issues arising in the implementation of autonomic managers taking care of multiple concerns and of coordination among hierarchies of such autonomic managers are discussed. Experimental results are presented that demonstrate the feasibility of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data flow techniques have been around since the early '70s when they were used in compilers for sequential languages. Shortly after their introduction they were also consideredas a possible model for parallel computing, although the impact here was limited. Recently, however, data flow has been identified as a candidate for efficient implementation of various programming models on multi-core architectures. In most cases, however, the burden of determining data flow "macro" instructions is left to the programmer, while the compiler/run time system manages only the efficient scheduling of these instructions. We discuss a structured parallel programming approach supporting automatic compilation of programs to macro data flow and we show experimental results demonstrating the feasibility of the approach and the efficiency of the resulting "object" code on different classes of state-of-the-art multi-core architectures. The experimental results use different base mechanisms to implement the macro data flow run time support, from plain pthreads with condition variables to more modern and effective lock- and fence-free parallel frameworks. Experimental results comparing efficiency of the proposed approach with those achieved using other, more classical, parallel frameworks are also presented. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent trends in computing systems, such as multi-core processors and cloud computing, expose tens to thousands of processors to the software. Software developers must respond by introducing parallelism in their software. To obtain highest performance, it is not only necessary to identify parallelism, but also to reason about synchronization between threads and the communication of data from one thread to another. This entry gives an overview on some of the most common abstractions that are used in parallel programming, namely explicit vs. implicit expression of parallelism and shared and distributed memory. Several parallel programming models are reviewed and categorized by means of these abstractions. The pros and cons of parallel programming models from the perspective of performance and programmability are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On multiprocessors with explicitly managed memory hierarchies (EMM), software has the responsibility of moving data in and out of fast local memories. This task can be complex and error-prone even for expert programmers. Before we can allow compilers to handle the complexity for us, we must identify the abstractions that are general enough to allow us to write applications with reasonable effort, yet speci?c enough to exploit the vast on-chip memory bandwidth of EMM multi-processors. To this end, we compare two programming models against hand-tuned codes on the STI Cell, paying attention to programmability and performance. The ?rst programming model, Sequoia, abstracts the memory hierarchy as private address spaces, each corresponding to a parallel task. The second, Cellgen, is a new framework which provides OpenMP-like semantics and the abstraction of a shared address spaces divided into private and shared data. We compare three applications programmed using these models against their hand-optimized counterparts in terms of abstractions, programming complexity, and performance.