792 resultados para Confirmatory Factor-analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Authentic Leadership Questionnaire (ALQ) is used to assess authentic leadership (AL). Although ALQ is often used in empirical research, cross-cultural studies with this measure are scarce. Aiming to contribute to filling this gap, this study assesses the invariance of the ALQ measure between samples of Brazilian (N = 1019) and Portuguese (N = 842) employees. A multi-group confirmatory factor analysis was performed, and the results showed the invariance of the first- and second-order factor models between the Brazilian and Portuguese samples. The results are discussed considering their cultural setting, with the study’s limitations and future research directions being pointed out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a validation study of the Perceived Social Competence in Career Scale (SCCarS). The sample included 571 adolescents, 283 girls (49.6%) and 287 boys (50.3%), aged 14 to 25 years old (ì=16.33±1.41), 10th and 11th grade students attending secondary schools in the northern, central and southern Portugal. Exploratory factor analysis indicates the presence of eight factors, with eigenvalues superior to 1.00, explaining 79.16% of the total variance of the items. Confirmatory factor analysis provided support to the factorial structure of eight factors, with adequate fit indices (X2/df=4.229, CFI= 0.909, GFI= 0.869, RMSEA= 0.079, p= 0.000). These results are consistent with the factorial structure found in previous studies carried out with Portuguese samples from 8th grade. Implications are drawn related to the need for further study of the psychometric characteristics of the SCCarS with young people from different age groups

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: To derive preference-based measures from various condition-specific descriptive health-related quality of life (HRQOL) measures. A general 2-stage method is evolved: 1) an item from each domain of the HRQOL measure is selected to form a health state classification system (HSCS); 2) a sample of health states is valued and an algorithm derived for estimating the utility of all possible health states. The aim of this analysis was to determine whether confirmatory or exploratory factor analysis (CFA, EFA) should be used to derive a cancer-specific utility measure from the EORTC QLQ-C30. Methods: Data were collected with the QLQ-C30v3 from 356 patients receiving palliative radiotherapy for recurrent or metastatic cancer (various primary sites). The dimensional structure of the QLQ-C30 was tested with EFA and CFA, the latter based on a conceptual model (the established domain structure of the QLQ-C30: physical, role, emotional, social and cognitive functioning, plus several symptoms) and clinical considerations (views of both patients and clinicians about issues relevant to HRQOL in cancer). The dimensions determined by each method were then subjected to item response theory, including Rasch analysis. Results: CFA results generally supported the proposed conceptual model, with residual correlations requiring only minor adjustments (namely, introduction of two cross-loadings) to improve model fit (increment χ2(2) = 77.78, p < .001). Although EFA revealed a structure similar to the CFA, some items had loadings that were difficult to interpret. Further assessment of dimensionality with Rasch analysis aligned the EFA dimensions more closely with the CFA dimensions. Three items exhibited floor effects (>75% observation at lowest score), 6 exhibited misfit to the Rasch model (fit residual > 2.5), none exhibited disordered item response thresholds, 4 exhibited DIF by gender or cancer site. Upon inspection of the remaining items, three were considered relatively less clinically important than the remaining nine. Conclusions: CFA appears more appropriate than EFA, given the well-established structure of the QLQ-C30 and its clinical relevance. Further, the confirmatory approach produced more interpretable results than the exploratory approach. Other aspects of the general method remain largely the same. The revised method will be applied to a large number of data sets as part of the international and interdisciplinary project to develop a multi-attribute utility instrument for cancer (MAUCa).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The tripartite model of anxiety and depression has been proposed as a representation of the structure of anxiety and depression symptoms. The Mood and Anxiety Symptom Questionnaire (MASQ) has been put forwards as a valid measure of the tripartite model of anxiety and depression symptoms. This research set out to examine the factor structure of anxiety and depression symptoms in a clinical sample to assess the MASQ's validity for use in this population. MethodsThe present study uses confirmatory factor analytic methods to examine the psychometric properties of the MASQ in 470 outpatients with anxiety and mood disorder. Results: The results showed that none of the previously reported two-factor, three-factor or five-factor models adequately fit the data, irrespective of whether items or subscales were used as the unit of analysis. Conclusions: It was concluded that the factor structure of the MASQ in a mixed anxiety/depression clinical sample does not support a structure consistent with the tripartite model. This suggests that researchers using the MASQ with anxious/depressed individuals should be mindful of the instrument's psychometric limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Nowadays, infertility problems have become a social concern, and are associated with multiple psychological and social problems. Also, it affects the interpersonal communication between the individual, familial, and social characteristics. Since women are exposed to stressors of physical, mental, social factors, and treatment of infertility, providing a psychometric screening tool is necessary for disorders of this group. Objective: The aim of this study was to determine the factor structure of the general health questionnaire-28 to discover mental disorders in infertile women. Materials and Methods: In this study, 220 infertile women undergoing treatment of infertility were selected from the Yazd Research and Clinical Center for Infertility with convenience sampling in 2011. After completing the general health questionnaire by the project manager, validity and, reliability of the questionnaire were calculated by confirmatory factor structure and Cronbach's alpha, respectively. Results: Four factors, including anxiety and insomnia, social dysfunction, depression, and physical symptoms were extracted from the factor structure. 50.12% of the total variance was explained by four factors. The reliability coefficient of the questionnaire was obtained 0.90. Conclusion: Analysis of the factor structure and reliability of General Health Questionnaire-28 showed that it is suitable as a screening instrument for assessing general health of infertile women.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to develop and assess the reliability and validity of a pair of self-report questionnaires to measure self-efficacy and expectancy associated with benzodiazepine use, the Benzodiazepine Refusal Self- Efficacy Questionnaire (BRSEQ) and the Benzodiazepine Expectancy Questionnaire (BEQ). Internal structure of the questionnaireswas established by principal component analysis (PCA) in a sample of 155 respondents, and verified by confirmatory factor analyses (CFA) in a second independent sample (n=139) using structural equation modeling. The PCA of the BRSEQ resulted in a 16-item, 4-factor scale, and the BEQ formed an 18-item, 2-factor scale. Both scales were internally reliable. CFA confirmed these internal structures and reduced the questionnaires to a 14-item self-efficacy scale and a 12-item expectancy scale. Lower self-efficacy and higher expectancy were moderately associated with higher scores on the SDS-B. The scales provide reliable measures for assessing benzodiazepine self-efficacy and expectancies. Future research will examine the utility of the scales in prospective prediction of benzodiazepine cessation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to gain a better understanding of the types of relationships that exist along the supply chain and the capabilities that are needed to manage them effectively. ---------- Design/methodology/approach: This is exploratory research as there has been little empirical research into this area. Quantitative data were gathered by using a self-administered questionnaire, using the Australian road freight industry as the context. There were 132 usable responses. Inferential and descriptive analysis, including factor analysis, confirmatory factor and regression analysis was used to examine the predictive power of relational factors in inter-firm relationships. ---------- Findings: Three factors were identified as having significant influence on relationships: sharing, power and interdependency. “Sharing” is the willingness of the organisation to share resources with other members of the supply chain. “Power” relates to exercising control based on experience, knowledge and position in the supply chain. “Interdependency” is the relative levels of dependency along the supply chain. ---------- Research limitations/implications: The research only looks at the Australian road freight industry; a wider sample including other industries would help to strengthen the generalisability of the findings. ---------- Practical implications: When these factors are correlated to the types of relationship, arm's length, cooperation, collaboration and alliances, managerial implications can be identified. The more road freight businesses place importance on power, the less they will cooperate. The greater the importance of sharing and interdependency, the greater is the likelihood of arm's length relationships. ---------- Originality/value: This paper makes a contribution by describing empirical work conducted in an under-researched but important area – supply chain relationships in the Australian road freight industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The high morbidity and mortality associated with atherosclerotic coronary vascular disease (CVD) and its complications are being lessened by the increased knowledge of risk factors, effective preventative measures and proven therapeutic interventions. However, significant CVD morbidity remains and sudden cardiac death continues to be a presenting feature for some subsequently diagnosed with CVD. Coronary vascular disease is also the leading cause of anaesthesia related complications. Stress electrocardiography/exercise testing is predictive of 10 year risk of CVD events and the cardiovascular variables used to score this test are monitored peri-operatively. Similar physiological time-series datasets are being subjected to data mining methods for the prediction of medical diagnoses and outcomes. This study aims to find predictors of CVD using anaesthesia time-series data and patient risk factor data. Several pre-processing and predictive data mining methods are applied to this data. Physiological time-series data related to anaesthetic procedures are subjected to pre-processing methods for removal of outliers, calculation of moving averages as well as data summarisation and data abstraction methods. Feature selection methods of both wrapper and filter types are applied to derived physiological time-series variable sets alone and to the same variables combined with risk factor variables. The ability of these methods to identify subsets of highly correlated but non-redundant variables is assessed. The major dataset is derived from the entire anaesthesia population and subsets of this population are considered to be at increased anaesthesia risk based on their need for more intensive monitoring (invasive haemodynamic monitoring and additional ECG leads). Because of the unbalanced class distribution in the data, majority class under-sampling and Kappa statistic together with misclassification rate and area under the ROC curve (AUC) are used for evaluation of models generated using different prediction algorithms. The performance based on models derived from feature reduced datasets reveal the filter method, Cfs subset evaluation, to be most consistently effective although Consistency derived subsets tended to slightly increased accuracy but markedly increased complexity. The use of misclassification rate (MR) for model performance evaluation is influenced by class distribution. This could be eliminated by consideration of the AUC or Kappa statistic as well by evaluation of subsets with under-sampled majority class. The noise and outlier removal pre-processing methods produced models with MR ranging from 10.69 to 12.62 with the lowest value being for data from which both outliers and noise were removed (MR 10.69). For the raw time-series dataset, MR is 12.34. Feature selection results in reduction in MR to 9.8 to 10.16 with time segmented summary data (dataset F) MR being 9.8 and raw time-series summary data (dataset A) being 9.92. However, for all time-series only based datasets, the complexity is high. For most pre-processing methods, Cfs could identify a subset of correlated and non-redundant variables from the time-series alone datasets but models derived from these subsets are of one leaf only. MR values are consistent with class distribution in the subset folds evaluated in the n-cross validation method. For models based on Cfs selected time-series derived and risk factor (RF) variables, the MR ranges from 8.83 to 10.36 with dataset RF_A (raw time-series data and RF) being 8.85 and dataset RF_F (time segmented time-series variables and RF) being 9.09. The models based on counts of outliers and counts of data points outside normal range (Dataset RF_E) and derived variables based on time series transformed using Symbolic Aggregate Approximation (SAX) with associated time-series pattern cluster membership (Dataset RF_ G) perform the least well with MR of 10.25 and 10.36 respectively. For coronary vascular disease prediction, nearest neighbour (NNge) and the support vector machine based method, SMO, have the highest MR of 10.1 and 10.28 while logistic regression (LR) and the decision tree (DT) method, J48, have MR of 8.85 and 9.0 respectively. DT rules are most comprehensible and clinically relevant. The predictive accuracy increase achieved by addition of risk factor variables to time-series variable based models is significant. The addition of time-series derived variables to models based on risk factor variables alone is associated with a trend to improved performance. Data mining of feature reduced, anaesthesia time-series variables together with risk factor variables can produce compact and moderately accurate models able to predict coronary vascular disease. Decision tree analysis of time-series data combined with risk factor variables yields rules which are more accurate than models based on time-series data alone. The limited additional value provided by electrocardiographic variables when compared to use of risk factors alone is similar to recent suggestions that exercise electrocardiography (exECG) under standardised conditions has limited additional diagnostic value over risk factor analysis and symptom pattern. The effect of the pre-processing used in this study had limited effect when time-series variables and risk factor variables are used as model input. In the absence of risk factor input, the use of time-series variables after outlier removal and time series variables based on physiological variable values’ being outside the accepted normal range is associated with some improvement in model performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite its widespread use, there has been limited examination of the underlying factor structure of the Psychological Sense of School Membership (PSSM) scale. The current study examined the psychometric properties of the PSSM to refine its utility for researchers and practitioners using a sample of 504 Australian high school students. Results from exploratory and confirmatory factor analyses indicated that the PSSM is a multidimensional instrument. Factor analysis procedures identified three factors representing related aspects of students’ perceptions of their school membership: caring relationships, acceptance, and rejection

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Outcome expectancies are a key cognitive construct in the etiology, assessment and treatment of Substance Use Disorders. There is a research and clinical need for a cannabis expectancy measure validated in a clinical sample of cannabis users. Method The Cannabis Expectancy Questionnaire (CEQ) was subjected to exploratory (n = 501, mean age 27.45, 78% male) and confirmatory (n = 505, mean age 27.69, 78% male) factor analysis in two separate samples of cannabis users attending an outpatient cannabis treatment program. Weekly cannabis consumption was clinically assessed and patients completed the Severity of Dependence Scale-Cannabis (SDS-C) and the General Health Questionnaire (GHQ-28). Results Two factors representing Negative Cannabis Expectancies and Positive Cannabis Expectancies were identified. These provided a robust statistical and conceptual fit for the data. Internal reliabilities were high. Negative expectancies were associated with greater dependence severity (as measured by the SDS) and positive expectancies with higher consumption. The interaction of positive and negative expectancies was consistently significantly associated with self-reported functioning across all four GHQ-28 scales (Somatic Concerns, Anxiety, Social Dysfunction and Depression). Specifically, within the context of high positive cannabis expectancy, higher negative expectancy was predictive of more impaired functioning. By contrast, within the context of low positive cannabis expectancy, higher negative expectancy was predictive of better functioning. Conclusions The CEQ is the first cannabis expectancy measure to be validated in a sample of cannabis users in treatment. Negative and positive cannabis expectancy domains were uniquely associated with consumption, dependence severity and self-reported mental health functioning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The validity of the Multidimensional School Anger Inventory (MSAI) was examined with adolescents from 5 Pacific Rim countries (N ¼ 3,181 adolescents; age, M ¼ 14.8 years; 52% females). Confirmatory factor analyses examined configural invariance for the MSAI’s anger experience, hostility, destructive expression, and anger coping subscales. The model did not converge for Peruvian students. Using the top 4 loaded items for anger experience, hostility, and destructive expression configural invariance and partial metric and scalar invariances were found. Latent means analysis compared mean responses on each subscale to the U.S. sample. Students from other countries showed higher mean responses on the anger experience subscale (ds ¼ .37–.73). Australian (d ¼ .40) and Japanese students (d ¼ .21) had significantly higher mean hostility subscale scores. Australian students had higher mean scores on the destructive expression subscale (d ¼ .30), whereas Japanese students had lower mean scores (d ¼ 2.17). The largest latent mean gender differences (females lower than males) were for destructive expression among Australian (d ¼ 2.67), Guatemalan (d ¼ 2.42), and U.S. (d ¼ 2.66) students. This study supported an abbreviated, 12-item MSAI with partial invariance. Implications for the use of the MSAI in comparative research are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The latest paradigm shift in government, termed Transformational Government, puts the citizen in the centre of attention. Including citizens in the design of online one-stop portals can help governmental organisations to become more customer focussed. This study describes the initial efforts of an Australian state government to develop an information architecture to structure the content of their future one-stop portal. Hereby, card sorting exercises have been conducted and analysed, utilising contemporary approaches found in academic and non-scientific literature. This paper describes the findings of the card sorting exercises in this particular case and discusses the suitability of the applied approaches in general. These are distinguished into non-statistical, statistical, and hybrid approaches. Thus, on the one hand, this paper contributes to academia by describing the application of different card sorting approaches and discussing their strengths and weaknesses. On the other hand, this paper contributes to practice by explaining the approach that has been taken by the authors’ research partner in order to develop a customer-focussed governmental one-stop portal. Thus, they provide decision support for practitioners with regard to different analysis methods that can be used to complement recent approaches in Transformational Government.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective Psychotic-like experiences (PLEs) are common, and are markers of poor mental health. This study examined the internal structure of a screening test, the Community Assessment of Psychic Experiences-Positive scale (CAPE-P) in a young Australian sample. Method A cross-sectional online survey, which included the CAPE-P, was completed by 1610 university students aged between 18 and 25 years. Confirmatory factor analyses compared 1-, 4-, and 5-factor models, and examined effects of omitting selected items. Results A 3-factor model, omitting items on magical thinking, grandiosity, paranormal beliefs and a cross-loading item produced the best fit. The resultant 15-item CAPE (CAPE-P15) had three subscales - Persecutory Ideation, Perceptual Abnormalities and Bizarre Experiences, all with high levels of internal consistency. Conclusion The CAPE-P15 shows promise as a measure of positive, psychosis-like experiences, but further validation of this measure is required in community samples.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study reported on the validation of the psychometric properties, the factorability, validity, and sensitivity of the Dysexecutive Questionnaire (DEX) in 3 clinical and nonclinical samples. A mixed sample of 997 participants—community (n = 663), psychiatric (depressed [n = 92] and anxious [n = 122]), and neurologically impaired (n = 120)—completed self-report questionnaires assessing executive dysfunction, depression, anxiety, stress, general self-efficacy, and satisfaction with life. Before analyses the data were randomly split into 2 subsets (A and B). Exploratory factor analysis performed on Subset A produced a 3-factor model (Factor 1: Inhibition, Factor 2: Volition, and Factor 3: Social Regulation) in which 15 of the original 20 items provided a revised factor structure that was superior to all other structures. A series of confirmatory factor analyses performed on Subset B confirmed that this revised factor structure was valid and reliable. The revised structure, labeled the DEX-R, was found to be a reliable and valid tool for assessing behavioral symptoms of dysexecutive functioning in mixed community, psychiatric, and neurological samples.