981 resultados para Computational algorithm


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Electromagnetism-like (EM) algorithm is a population- based stochastic global optimization algorithm that uses an attraction- repulsion mechanism to move sample points towards the optimal. In this paper, an implementation of the EM algorithm in the Matlab en- vironment as a useful function for practitioners and for those who want to experiment a new global optimization solver is proposed. A set of benchmark problems are solved in order to evaluate the performance of the implemented method when compared with other stochastic methods available in the Matlab environment. The results con rm that our imple- mentation is a competitive alternative both in term of numerical results and performance. Finally, a case study based on a parameter estimation problem of a biology system shows that the EM implementation could be applied with promising results in the control optimization area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a single-phase Series Active Power Filter (Series APF) for mitigation of the load voltage harmonic content, while maintaining the voltage on the DC side regulated without the support of a voltage source. The proposed series active power filter control algorithm eliminates the additional voltage source to regulate the DC voltage, and with the adopted topology it is not used a coupling transformer to interface the series active power filter with the electrical power grid. The paper describes the control strategy which encapsulates the grid synchronization scheme, the compensation voltage calculation, the damping algorithm and the dead-time compensation. The topology and control strategy of the series active power filter have been evaluated in simulation software and simulations results are presented. Experimental results, obtained with a developed laboratorial prototype, validate the theoretical assumptions, and are within the harmonic spectrum limits imposed by the international recommendations of the IEEE-519 Standard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural selection favors the survival and reproduction of organisms that are best adapted to their environment. Selection mechanism in evolutionary algorithms mimics this process, aiming to create environmental conditions in which artificial organisms could evolve solving the problem at hand. This paper proposes a new selection scheme for evolutionary multiobjective optimization. The similarity measure that defines the concept of the neighborhood is a key feature of the proposed selection. Contrary to commonly used approaches, usually defined on the basis of distances between either individuals or weight vectors, it is suggested to consider the similarity and neighborhood based on the angle between individuals in the objective space. The smaller the angle, the more similar individuals. This notion is exploited during the mating and environmental selections. The convergence is ensured by minimizing distances from individuals to a reference point, whereas the diversity is preserved by maximizing angles between neighboring individuals. Experimental results reveal a highly competitive performance and useful characteristics of the proposed selection. Its strong diversity preserving ability allows to produce a significantly better performance on some problems when compared with stat-of-the-art algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACTThe Amazon várzeas are an important component of the Amazon biome, but anthropic and climatic impacts have been leading to forest loss and interruption of essential ecosystem functions and services. The objectives of this study were to evaluate the capability of the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) algorithm to characterize changes in várzeaforest cover in the Lower Amazon, and to analyze the potential of spectral and temporal attributes to classify forest loss as either natural or anthropogenic. We used a time series of 37 Landsat TM and ETM+ images acquired between 1984 and 2009. We used the LandTrendr algorithm to detect forest cover change and the attributes of "start year", "magnitude", and "duration" of the changes, as well as "NDVI at the end of series". Detection was restricted to areas identified as having forest cover at the start and/or end of the time series. We used the Support Vector Machine (SVM) algorithm to classify the extracted attributes, differentiating between anthropogenic and natural forest loss. Detection reliability was consistently high for change events along the Amazon River channel, but variable for changes within the floodplain. Spectral-temporal trajectories faithfully represented the nature of changes in floodplain forest cover, corroborating field observations. We estimated anthropogenic forest losses to be larger (1.071 ha) than natural losses (884 ha), with a global classification accuracy of 94%. We conclude that the LandTrendr algorithm is a reliable tool for studies of forest dynamics throughout the floodplain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PhD thesis in Biomedical Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Civil Engineering

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of genome-scale metabolic models has been rapidly increasing in fields such as metabolic engineering. An important part of a metabolic model is the biomass equation since this reaction will ultimately determine the predictive capacity of the model in terms of essentiality and flux distributions. Thus, in order to obtain a reliable metabolic model the biomass precursors and their coefficients must be as precise as possible. Ideally, determination of the biomass composition would be performed experimentally, but when no experimental data are available this is established by approximation to closely related organisms. Computational methods however, can extract some information from the genome such as amino acid and nucleotide compositions. The main objectives of this study were to compare the biomass composition of several organisms and to evaluate how biomass precursor coefficients affected the predictability of several genome-scale metabolic models by comparing predictions with experimental data in literature. For that, the biomass macromolecular composition was experimentally determined and the amino acid composition was both experimentally and computationally estimated for several organisms. Sensitivity analysis studies were also performed with the Escherichia coli iAF1260 metabolic model concerning specific growth rates and flux distributions. The results obtained suggest that the macromolecular composition is conserved among related organisms. Contrasting, experimental data for amino acid composition seem to have no similarities for related organisms. It was also observed that the impact of macromolecular composition on specific growth rates and flux distributions is larger than the impact of amino acid composition, even when data from closely related organisms are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automated optimization framework able to provide network administrators with resilient routing configurations for link-state protocols, such as OSPF or IS-IS. In order to deal with the formulated NP-hard optimization problems, the devised framework is underpinned by the use of computational intelligence optimization engines, such as Multi-objective Evolutionary Algorithms (MOEAs). With the objective of demonstrating the framework capabilities, two illustrative Traffic Engineering methods are described, allowing to attain routing configurations robust to changes in the traffic demands and maintaining the network stable even in the presence of link failure events. The presented illustrative results clearly corroborate the usefulness of the proposed automated framework along with the devised optimization methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto, enmarcado en el área de metodología de análisis en bioingeniería-biotecnología aplicadas al estudio del cancer, es el análisis y caracterización a través modelos estadísticos con efectos mixtos y técnicas de aprendizaje automático, de perfiles de expresión de proteínas y genes de las vías metabolicas asociadas a progresión tumoral. Dicho estudio se llevará a cabo mediante la utilización de tecnologías de alto rendimiento. Las mismas permiten evaluar miles de genes/proteínas en forma simultánea, generando así una gran cantidad de datos de expresión. Se hipotetiza que para un análisis e interpretación de la información subyacente, caracterizada por su abundancia y complejidad, podría realizarse mediante técnicas estadístico-computacionales eficientes en el contexto de modelos mixtos y técnias de aprendizaje automático. Para que el análisis sea efectivo es necesario contemplar los efectos ocasionados por los diferentes factores experimentales ajenos al fenómeno biológico bajo estudio. Estos efectos pueden enmascarar la información subycente y así perder informacion relavante en el contexto de progresión tumoral. La identificación de estos efectos permitirá obtener, eficientemente, los perfiles de expresión molecular que podrían permitir el desarrollo de métodos de diagnóstico basados en ellos. Con este trabajo se espera poner a disposición de investigadores de nuestro medio, herramientas y procedimientos de análisis que maximicen la eficiencia en el uso de los recursos asignados a la masiva captura de datos genómicos/proteómicos que permitan extraer información biológica relevante pertinente al análisis, clasificación o predicción de cáncer, el diseño de tratamientos y terapias específicos y el mejoramiento de los métodos de detección como así tambien aportar al entendimieto de la progresión tumoral mediante análisis computacional intensivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El avance en la potencia de cómputo en nuestros días viene dado por la paralelización del procesamiento, dadas las características que disponen las nuevas arquitecturas de hardware. Utilizar convenientemente este hardware impacta en la aceleración de los algoritmos en ejecución (programas). Sin embargo, convertir de forma adecuada el algoritmo en su forma paralela es complejo, y a su vez, esta forma, es específica para cada tipo de hardware paralelo. En la actualidad los procesadores de uso general más comunes son los multicore, procesadores paralelos, también denominados Symmetric Multi-Processors (SMP). Hoy en día es difícil hallar un procesador para computadoras de escritorio que no tengan algún tipo de paralelismo del caracterizado por los SMP, siendo la tendencia de desarrollo, que cada día nos encontremos con procesadores con mayor numero de cores disponibles. Por otro lado, los dispositivos de procesamiento de video (Graphics Processor Units - GPU), a su vez, han ido desarrollando su potencia de cómputo por medio de disponer de múltiples unidades de procesamiento dentro de su composición electrónica, a tal punto que en la actualidad no es difícil encontrar placas de GPU con capacidad de 200 a 400 hilos de procesamiento paralelo. Estos procesadores son muy veloces y específicos para la tarea que fueron desarrollados, principalmente el procesamiento de video. Sin embargo, como este tipo de procesadores tiene muchos puntos en común con el procesamiento científico, estos dispositivos han ido reorientándose con el nombre de General Processing Graphics Processor Unit (GPGPU). A diferencia de los procesadores SMP señalados anteriormente, las GPGPU no son de propósito general y tienen sus complicaciones para uso general debido al límite en la cantidad de memoria que cada placa puede disponer y al tipo de procesamiento paralelo que debe realizar para poder ser productiva su utilización. Los dispositivos de lógica programable, FPGA, son dispositivos capaces de realizar grandes cantidades de operaciones en paralelo, por lo que pueden ser usados para la implementación de algoritmos específicos, aprovechando el paralelismo que estas ofrecen. Su inconveniente viene derivado de la complejidad para la programación y el testing del algoritmo instanciado en el dispositivo. Ante esta diversidad de procesadores paralelos, el objetivo de nuestro trabajo está enfocado en analizar las características especificas que cada uno de estos tienen, y su impacto en la estructura de los algoritmos para que su utilización pueda obtener rendimientos de procesamiento acordes al número de recursos utilizados y combinarlos de forma tal que su complementación sea benéfica. Específicamente, partiendo desde las características del hardware, determinar las propiedades que el algoritmo paralelo debe tener para poder ser acelerado. Las características de los algoritmos paralelos determinará a su vez cuál de estos nuevos tipos de hardware son los mas adecuados para su instanciación. En particular serán tenidos en cuenta el nivel de dependencia de datos, la necesidad de realizar sincronizaciones durante el procesamiento paralelo, el tamaño de datos a procesar y la complejidad de la programación paralela en cada tipo de hardware. Today´s advances in high-performance computing are driven by parallel processing capabilities of available hardware architectures. These architectures enable the acceleration of algorithms when thes ealgorithms are properly parallelized and exploit the specific processing power of the underneath architecture. Most current processors are targeted for general pruposes and integrate several processor cores on a single chip, resulting in what is known as a Symmetric Multiprocessing (SMP) unit. Nowadays even desktop computers make use of multicore processors. Meanwhile, the industry trend is to increase the number of integrated rocessor cores as technology matures. On the other hand, Graphics Processor Units (GPU), originally designed to handle only video processing, have emerged as interesting alternatives to implement algorithm acceleration. Current available GPUs are able to implement from 200 to 400 threads for parallel processing. Scientific computing can be implemented in these hardware thanks to the programability of new GPUs that have been denoted as General Processing Graphics Processor Units (GPGPU).However, GPGPU offer little memory with respect to that available for general-prupose processors; thus, the implementation of algorithms need to be addressed carefully. Finally, Field Programmable Gate Arrays (FPGA) are programmable devices which can implement hardware logic with low latency, high parallelism and deep pipelines. Thes devices can be used to implement specific algorithms that need to run at very high speeds. However, their programmability is harder that software approaches and debugging is typically time-consuming. In this context where several alternatives for speeding up algorithms are available, our work aims at determining the main features of thes architectures and developing the required know-how to accelerate algorithm execution on them. We look at identifying those algorithms that may fit better on a given architecture as well as compleme

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2011

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visualistics, computer science, picture syntax, picture semantics, picture pragmatics, interactive pictures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Complex Microwave Structures Wake Field Computatation PETRA III Generalized Multipole Technique Antenna Antennen Wakefelder Berechnung