915 resultados para Compound parabolic concentrator
Resumo:
Thermoelectric generators (TEG) are solid state devices and are able to convert thermal energy directly into electricity and thus could play an important role in waste heat recovery in the near future. Half-Heusler (HH) compounds with the general formula MNiSn (M = Ti, Zr, Hf) built a promising class of materials for these applications because of their high Seebeck coefficients, their environmentally friendliness and their cost advantage over conventional thermoelectric materials.rnrnMuch of the existing literature on HH deals with thermoelectric characterization of n-type MNiSn and p-type MCoSb compounds. Studies on p-type MNiSn-based HHs are far fewer in number. To fabricate high efficient thermoelectric modules based on HH compounds, high performance p-type MNiSn systems need to be developed that are compatible with the existing n-type HH compounds. This thesis explores synthesis strategies for p-type MNiSn based compounds. In particular, the efficacy of transition metals (Sc, La) and main group elements (Al, Ga, In) as acceptor dopants on the Sn-site in ZrNiSn, was investigated by evaluating their thermoelectric performance. The most promising p-type materials could be achieved with transition metal dopants, where the introduction of Sc on the Zr side, yielded the highest Seebeck coefficient in a ternary NiSn-based HH compound up to this date. Hall effect and band gap measurements of this system showed, that the high mobility of minority carrier electrons dominate the transport properties at temperatures above 500 K. It could be shown that this is the reason, why n-type HH are successful TE materials for high temperature applications, and that p-types are subjected to bipolar effects which will lead to diminished thermoelectric efficiencies at high temperatures.rnrnTo complement the experimental investigations on different metal dopants and their influence on the TE properties of HH compounds, numerical solutions to the Boltzmann transport equation were used to predict the optimum carrier concentration where the maximum TE efficiency occurs for p-type HH compounds. The results for p-type samples showed that can not be treated within a simple parabolic band model approach, due to bipolar and multi-band effects.rnrnThe parabolic band model is commonly used for bulk TE materials. It is most accurate when the transport properties are dominated by one single carrier type. Since the transport properties of n-type HH are dominated by only one carrier type (high mobility electrons), it could be shown, that the use of a simple parabolic band model lead to a successful prediction of the optimized carrier concentration and thermoelectric efficiency in n-type HH compounds. rn
Resumo:
Heusler compounds is a large class of materials, which exhibits diverse fundamental phenomena, together with the possibility of their specific tailoring for various engineering demands. Present work discusses the magnetic noncollinearity in the family of noncentrosymmetric ferrimagnetic Mn2-based Heusler compounds. Based on the obtained experimental and theoretical results, Mn2YZ Heusler family is suspected to provide promising candidates for the formation of the skyrmion lattice. The work is focused on Mn2RhSn bulk polycrystalline sample, which serves as a prototype. It crystallizes in the tetragonal noncentrosymmetric structure (No. 119, I-4m2), which enables the anisotropic Dzyaloshinskii-Moriya (DM) exchange coupling. Additional short-range modulation, induced by the competing nearest and next-nearest interplanes Heisenberg exchange, is suppressed above the 80 K. This allows to develop the long-range modulations in the ideal ferrimagnetic structure within the ab crystallographic planes, and thus, favors to the occurrence of the skyrmion lattice within the temperature range of (80 ≤ T ≤ 270) K. The studies of Mn2RhSn were expandedrnto the broad composition range and continued on thin film samples.
Resumo:
The importance of pyrazole and lactam-based molecules in medical and pharmaceutical fields is underlined by the multitude of active ingredients on trade, such as Sildenafil or Apixaban, by Pfizer. In this work, a synthesis of an organic molecule with promising anticancer activity has been developed. This molecular scaffold is characterized by a δ-lactam-fused pyrazolic core, with a well-known biological activity and amenable of further functionalization. The synthetic strategy adopted for the obtainment of the core was based on a 1,3-dipolar cycloaddition of a nitrilimine with an α,β-unsaturated δ-lactam. Secondly, in order to give the final compound an elevated pharmacological activity, a functionalization with a double “side chain”, namely molecular fragment able to improve the interaction with particular biological receptors, was achieved. The target compound was thus obtained, with a highly convergent synthesis, and will be tested for antiproliferative activities towards different cellular lines.
Resumo:
Nowadays, soy is one of the most used ingredients in the formulation of fish feed, due to the ample market supply, lower market price, high protein concentration and favorable amino acid composition. Nevertheless, soybean meal products are rich and primary diet source of phytoestrogens, as genistein, which may have a potential negative impact on growth, hormonal regulation and lipid metabolism in fish. The principal aim of this study was to better understand in vivo and in vitro genistein’s effects on lipid metabolism of rainbow trout. In adipose tissue it was showed an unclear role of genistein on lipid metabolism in rainbow trout, and in liver an anti-obesogenic effect, with an up-regulation of autophagy-related genes LC3b (in adipose tissue) and ATG4b (in liver and adipose tissue), a down-regulation of apoptosis-related genes CASP3 (in adipose tissue) and CASP8 (in liver). An increase of VTG mRNA levels in liver was also observed. Genistein partially exerted these effects via estrogen- receptor dependent mechanism. In white muscle, genistein seemed to promote lipid turnover, up-regulating lipogenic (FAS and LXR) and lipolytic (HSL, PPARα and PPARβ) genes. It seemed that genistein could exert its lipolytic role via autophagic way (up-regulation of ATG4b and ATG12l), not through an apoptotic pathway (down-regulation of CASP3). The effects of genistein on lipid-metabolism and apoptosis-related genes in trout muscle were not dose-dependent, only on autophagy-related genes ATG4B and ATG12l. Moreover, a partial estrogenic activity of this phytoestrogen was also seen. Through in vitro analysis (MTT and ORO assay), instead, it was observed an anti-obesogenic effect of genistein on rainbow trout adipocytes, and this effect was not mediated by ERs. Both in vivo and in vitro, genistein exerted its effects in a dose-dependent manner.
Resumo:
Pneumococcal meningitis causes apoptosis of developing neurons in the dentate gyrus of the hippocampus. The death of these cells is accompanied with long-term learning and memory deficits in meningitis survivors. Here, we studied the role of the PI3K/Akt (protein kinase B) survival pathway in hippocampal apoptosis in a well-characterized infant rat model of pneumococcal meningitis. Meningitis was accompanied by a significant decrease of the PI3K product phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and of phosphorylated (i.e., activated) Akt in the hippocampus. At the cellular level, phosphorylated Akt was decreased in both the granular layer and the subgranular zone of the dentate gyrus, the region where the developing neurons undergo apoptosis. Protein levels and activity of PTEN, the major antagonist of PI3K, were unaltered by infection, suggesting that the observed decrease in PIP(3) and Akt phosphorylation is a result of decreased PI3K signaling. Treatment with the PTEN inhibitor bpV(pic) restored Akt activity and significantly attenuated hippocampal apoptosis. Co-treatment with the specific PI3K inhibitor LY294002 reversed the restoration of Akt activity and attenuation of hippocampal apoptosis, while it had no significant effect on these parameters on its own. These results indicate that the inhibitory effect of bpV(pic) on apoptosis was mediated by PI3K-dependent activation of Akt, strongly suggesting that bpV(pic) acted on PTEN. Treatment with bpV(pic) also partially inhibited the concentration of bacteria and cytokines in the CSF, but this effect was not reversed by LY294002, indicating that the effect of bpV(pic) on apoptosis was independent of its effect on CSF bacterial burden and cytokine levels. These results indicate that the PI3K/Akt pathway plays an important role in the death and survival of developing hippocampal neurons during the acute phase of pneumococcal meningitis.
Resumo:
In this article we propose a bootstrap test for the probability of ruin in the compound Poisson risk process. We adopt the P-value approach, which leads to a more complete assessment of the underlying risk than the probability of ruin alone. We provide second-order accurate P-values for this testing problem and consider both parametric and nonparametric estimators of the individual claim amount distribution. Simulation studies show that the suggested bootstrap P-values are very accurate and outperform their analogues based on the asymptotic normal approximation.
Resumo:
The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 microg/ bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stabilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated.
Resumo:
The formation of aerosols is a key component in understanding cloud formation in the context of radiative forcings and global climate modeling. Biogenic volatile organic compounds (BVOCs) are a significant source of aerosols, yet there is still much to be learned about their structures, sources, and interactions. The aims of this project were to identify the BVOCs found in the defense chemicals of the brown marmorated stink bug Halymorpha halys and quantify them using gas chromatography-mass spectrometry (GC/MS) and test whether oxidation of these compounds by ozone-promoted aerosol and cloud seed formation. The bugs were tested under two conditions: agitation by asphyxiation and direct glandular exposure. Tridecane, 2(5H)-furanone 5-ethyl, and (E)-2-decenal were identified as the three most abundant compounds. H. halys were also tested in the agitated condition in a smog chamber. It was found that in the presence of 100-180 ppm ozone, secondary aerosols do form. A scanning mobility particle sizer (SMPS) and a cloud condensation nuclei counter (CCNC) were used to characterize the secondary aerosols that formed. This reaction resulted in 0.23 mu g/bug of particulate mass. It was also found that these secondary organic aerosol particles could act as cloud condensation nuclei. At a supersaturation of 1%, we found a kappa value of 0.09. Once regional populations of these stink bugs stablilize and the populations estimates can be made, the additional impacts of their contribution to regional air quality can be calculated. Implications: Halymorpha halys (brown marmorated stink bugs) are a relatively new invasive species introduced in the United States near Allentown, Pennsylvania. The authors chemically speciated the bugs' defense pheromones and found that tridecane, 5-ethyl-2(5H)-furanone, and (E)-2-decenal dominated their emissions. Their defense emissions were reacted with atmospherically relevant concentrations of ozone and resulted in 0.23 g of particulate matter per emission per bug. Due to the large population of these bugs in some regions, these emissions could contribute appreciably to a region's PM2.5 (particulate matter with an aerodynamic diameter 2.5 m) levels.
Resumo:
High resolution friction force maps of the benzylammonium terminated crystalline surface of a layer compound are presented. The lateral force map acquired with an atomic force microscope, reveals a significant contrast between different molecular orientations yielding molecular rows which differ from their neighboring ones. The single crystals are formed by stacks of copper oxalate sheets sandwiched between stereoregular organic cations, resulting in highly organized surface structures. Single molecular defects are observed at small loads. The experimental results are compared with numerical calculations which indicate a transition from an unperturbed state at small loads to a distorted state at higher loads. (C) 2011 American Institute of Physics.