885 resultados para Competency-Based Approach
Resumo:
In this paper an agent-based approach for anomalies monitoring in distributed systems such as computer networks, or Grid systems is proposed. This approach envisages on-line and off-line monitoring in order to analyze users’ activity. On-line monitoring is carried in real time, and is used to predict user actions. Off-line monitoring is done after the user has ended his work, and is based on the analysis of statistical information obtained during user’s work. In both cases neural networks are used in order to predict user actions and to distinguish normal and anomalous user behavior.
Resumo:
In recent years Web has become mainstream medium for communication and information dissemination. This paper presents approaches and methods for adaptive learning implementation, which are used in some contemporary web-interfaced Learning Management Systems (LMSs). The problem is not how to create electronic learning materials, but how to locate and utilize the available information in personalized way. Different attitudes to personalization are briefly described in section 1. The real personalization requires a user profile containing information about preferences, aims, and educational history to be stored and used by the system. These issues are considered in section 2. A method for development and design of adaptive learning content in terms of learning strategy system support is represented in section 3. Section 4 includes a set of innovative personalization services that are suggested by several very important research projects (SeLeNe project, ELENA project, etc.) dated from the last few years. This section also describes a model for role- and competency-based learning customization that uses Web Services approach. The last part presents how personalization techniques are implemented in Learning Grid-driven applications.
Improving T cell-induced response to subunit vaccines:opportunities for a proteomic systems approach
Resumo:
Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. Objectives: In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. Key findings: Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. Summary: In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.
Resumo:
A new method to implementation of dialog based on graphical static scenes using an ontology-based approach to user interface development is proposed. The main idea of the approach is to form necessary to the user interface development and implementation information using ontologies and then based on this high-level specification to generate the user interface.
Resumo:
Recommender systems are now widely used in e-commerce applications to assist customers to find relevant products from the many that are frequently available. Collaborative filtering (CF) is a key component of many of these systems, in which recommendations are made to users based on the opinions of similar users in a system. This paper presents a model-based approach to CF by using supervised ARTMAP neural networks (NN). This approach deploys formation of reference vectors, which makes a CF recommendation system able to classify user profile patterns into classes of similar profiles. Empirical results reported show that the proposed approach performs better than similar CF systems based on unsupervised ART2 NN or neighbourhood-based algorithm.
Resumo:
This paper investigates the role of entrepreneurs' general and specific human capital on the performance of UK new technology based firms using a resource based approach to the entrepreneurship theory. The effect of entrepreneurial human capital on the performance of NTBFs is investigated using data derived from a survey of 412 firms operating in both high-tech manufacturing and the services sectors. According to the resource based theory it is found that specific human capital is more important for the performance of NTBFs in relation to general. More specifically individual entrepreneurs or entrepreneurial teams with high levels of formal business education, commercial, managerial or same sector experience are found to have created better performing NTBFs. Finally it is found that the performance of a NTBF can improve through the combination of heterogeneous but complementary skills, including, for example, technical education and commercial experience or managerial technical and managerial commercial experience. © 2010 Springer Science+Business Media, LLC.
Resumo:
* The presented work has discussed on the KDS-2003. It has corrected in compliance with remarks and requests of participants.
Resumo:
This paper examines the implications of a place-based economic strategy in the context of the UK Coalition government's framework for achieving local growth and the creation of Local Economic Partnerships in England. It draws on the international literature to outline the basic foundations of place-based policy approaches. It explores two key features, particularly as they relate to governance institutions and to the role of knowledge. After examining key concepts in the place-based policy literature, such as 'communities of interest' and 'capital city' and 'local elites', it shows how they might be interpreted in an English policy context. The paper then discusses a place-based approach towards an understanding of the role of knowledge, linked to debates around 'smart specialisation'. In doing so, it shows why there is an important 'missing space' in local growth between the 'national' and the 'local' and how that space might be filled through appropriate governance institutions and policy responses. Overall, the paper outlines what a place-based approach might mean in particular for Central Government, in changing its approach towards sub-national places and for local places, in seeking to realise their own potential. Furthermore, it outlines what the 'missing space' is and how it might be filled, and therefore what a place-based sub-national economic strategy might address. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Resumo:
Bio energy is a renewable energy and a solution to the depleting fossil fuels. Bio energy such as heat, power and bio fuel is generated by conversion technologies using biomass for example domestic waste, root crops, forest residue and animal slurry. Pyrolysis, anaerobic digestion and combined heat and power engine are some examples of the technologies. Depending on the nature of a biomass, it can be treated with various technologies giving out some products, which can be further treated with other technologies and eventually converted into the final products as bio energy. The pathway followed by the biomass, technologies, intermediate products and bio energy in the conversion process is referred to as bio energy pathway. Identification of appropriate pathways optimizes the conversion process. Although there are various approaches to create or generate the pathways, there is still a need for a semantic approach to generate the pathways, which allow checking the consistency of the knowledge, and to share and extend the knowledge efficiently. This paper presents an ontology-based approach to automatic generation of the pathways for biomass to bio energy conversion, which exploits the definition and hierarchical structure of the biomass and technologies, their relationship and associated properties, and infers appropriate pathways. A case study has been carried out in a real-life scenario, the bio energy project for the North West of Europe (Bioen NW), which showed promising results.
Resumo:
We introduce a novel algorithm for medial surfaces extraction that is based on the density-corrected Hamiltonian analysis. The approach extracts the skeleton directly from a triangulated mesh and adopts an adaptive octree-based approach in which only skeletal voxels are refined to a lower level of the hierarchy, resulting in robust and accurate skeletons at extremely high resolution. The quality of the extracted medial surfaces is confirmed by an extensive set of experiments. © 2012 IEEE.
Resumo:
Image database visualisations, in particular mapping-based visualisations, provide an interesting approach to accessing image repositories as they are able to overcome some of the drawbacks associated with retrieval based approaches. However, making a mapping-based approach work efficiently on large remote image databases, has yet to be explored. In this paper, we present Web-Based Images Browser (WBIB), a novel system that efficiently employs image pyramids to reduce bandwidth requirements so that users can interactively explore large remote image databases. © 2013 Authors.
Resumo:
In this paper we propose an adaptive power and message rate control method for safety applications at road intersections. The design objectives are to firstly provide guaranteed QoS support to both high priority emergency safety applications and low priority routine safety applications and secondly maximize channel utilization. We use an offline simulation based approach to find out the best possible configurations of transmit power and message rate for given numbers of vehicles in the network with certain safety QoS requirements. The identified configurations are then used online by roadside access points (AP) adaptively according to estimated number of vehicles. Simulation results show that this adaptive method could provide required QoS support to safety applications and it significantly outperforms a fixed control method. © 2013 International Information Institute.
Resumo:
There has been an increasing interest in the use of agent-based simulation and some discussion of the relative merits of this approach as compared to discrete-event simulation. There are differing views on whether an agent-based simulation offers capabilities that discrete-event cannot provide or whether all agent-based applications can at least in theory be undertaken using a discrete-event approach. This paper presents a simple agent-based NetLogo model and corresponding discrete-event versions implemented in the widely used ARENA software. The two versions of the discrete-event model presented use a traditional process flow approach normally adopted in discrete-event simulation software and also an agent-based approach to the model build. In addition a real-time spatial visual display facility is provided using a spreadsheet platform controlled by VBA code embedded within the ARENA model. Initial findings from this investigation are that discrete-event simulation can indeed be used to implement agent-based models and with suitable integration elements such as VBA provide the spatial displays associated with agent-based software.
Resumo:
This dissertation presents a system-wide approach, based on genetic algorithms, for the optimization of transfer times for an entire bus transit system. Optimization of transfer times in a transit system is a complicated problem because of the large set of binary and discrete values involved. The combinatorial nature of the problem imposes a computational burden and makes it difficult to solve by classical mathematical programming methods. ^ The genetic algorithm proposed in this research attempts to find an optimal solution for the transfer time optimization problem by searching for a combination of adjustments to the timetable for all the routes in the system. It makes use of existing scheduled timetables, ridership demand at all transfer locations, and takes into consideration the randomness of bus arrivals. ^ Data from Broward County Transit are used to compute total transfer times. The proposed genetic algorithm-based approach proves to be capable of producing substantial time savings compared to the existing transfer times in a reasonable amount of time. ^ The dissertation also addresses the issues related to spatial and temporal modeling, variability in bus arrival and departure times, walking time, as well as the integration of scheduling and ridership data. ^
Resumo:
Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally, to address the limitations of black-box-based resource management solutions, a cross-layer optimization approach is proposed to enable cooperation between a VM’s host and guest layers and further improve the application QoS and resource usage efficiency. The above proposed approaches are prototyped and evaluated on a Xen-based virtualized system and evaluated with representative benchmarks including TPC-H, RUBiS, and TerraFly. The results demonstrate that the fuzzy-modeling-based approach improves the accuracy in resource prediction by up to 31.4% compared to conventional regression approaches. The FMPC approach substantially outperforms the traditional linear-model-based predictive control approach in meeting application QoS targets for an oversubscribed system. It is able to manage dynamic VM resource allocations and migrations for over 100 concurrent VMs across multiple hosts with good efficiency. Finally, the cross-layer optimization approach further improves the performance of a virtualized application by up to 40% when the resources are contended by dynamic workloads.