945 resultados para Combinatorial optimization algorithms
Resumo:
This work is structured as follows: In Section 1 we discuss the clinical problem of heart failure. In particular, we present the phenomenon known as ventricular mechanical dyssynchrony: its impact on cardiac function, the therapy for its treatment and the methods for its quantification. Specifically, we describe the conductance catheter and its use for the measurement of dyssynchrony. At the end of the Section 1, we propose a new set of indexes to quantify the dyssynchrony that are studied and validated thereafter. In Section 2 we describe the studies carried out in this work: we report the experimental protocols, we present and discuss the results obtained. Finally, we report the overall conclusions drawn from this work and we try to envisage future works and possible clinical applications of our results. Ancillary studies that were carried out during this work mainly to investigate several aspects of cardiac resynchronization therapy (CRT) are mentioned in Appendix. -------- Ventricular mechanical dyssynchrony plays a regulating role already in normal physiology but is especially important in pathological conditions, such as hypertrophy, ischemia, infarction, or heart failure (Chapter 1,2.). Several prospective randomized controlled trials supported the clinical efficacy and safety of cardiac resynchronization therapy (CRT) in patients with moderate or severe heart failure and ventricular dyssynchrony. CRT resynchronizes ventricular contraction by simultaneous pacing of both left and right ventricle (biventricular pacing) (Chapter 1.). Currently, the conductance catheter method has been used extensively to assess global systolic and diastolic ventricular function and, more recently, the ability of this instrument to pick-up multiple segmental volume signals has been used to quantify mechanical ventricular dyssynchrony. Specifically, novel indexes based on volume signals acquired with the conductance catheter were introduced to quantify dyssynchrony (Chapter 3,4.). Present work was aimed to describe the characteristics of the conductancevolume signals, to investigate the performance of the indexes of ventricular dyssynchrony described in literature and to introduce and validate improved dyssynchrony indexes. Morevoer, using the conductance catheter method and the new indexes, the clinical problem of the ventricular pacing site optimization was addressed and the measurement protocol to adopt for hemodynamic tests on cardiac pacing was investigated. In accordance to the aims of the work, in addition to the classical time-domain parameters, a new set of indexes has been extracted, based on coherent averaging procedure and on spectral and cross-spectral analysis (Chapter 4.). Our analyses were carried out on patients with indications for electrophysiologic study or device implantation (Chapter 5.). For the first time, besides patients with heart failure, indexes of mechanical dyssynchrony based on conductance catheter were extracted and studied in a population of patients with preserved ventricular function, providing information on the normal range of such a kind of values. By performing a frequency domain analysis and by applying an optimized coherent averaging procedure (Chapter 6.a.), we were able to describe some characteristics of the conductance-volume signals (Chapter 6.b.). We unmasked the presence of considerable beat-to-beat variations in dyssynchrony that seemed more frequent in patients with ventricular dysfunction and to play a role in discriminating patients. These non-recurrent mechanical ventricular non-uniformities are probably the expression of the substantial beat-to-beat hemodynamic variations, often associated with heart failure and due to cardiopulmonary interaction and conduction disturbances. We investigated how the coherent averaging procedure may affect or refine the conductance based indexes; in addition, we proposed and tested a new set of indexes which quantify the non-periodic components of the volume signals. Using the new set of indexes we studied the acute effects of the CRT and the right ventricular pacing, in patients with heart failure and patients with preserved ventricular function. In the overall population we observed a correlation between the hemodynamic changes induced by the pacing and the indexes of dyssynchrony, and this may have practical implications for hemodynamic-guided device implantation. The optimal ventricular pacing site for patients with conventional indications for pacing remains controversial. The majority of them do not meet current clinical indications for CRT pacing. Thus, we carried out an analysis to compare the impact of several ventricular pacing sites on global and regional ventricular function and dyssynchrony (Chapter 6.c.). We observed that right ventricular pacing worsens cardiac function in patients with and without ventricular dysfunction unless the pacing site is optimized. CRT preserves left ventricular function in patients with normal ejection fraction and improves function in patients with poor ejection fraction despite no clinical indication for CRT. Moreover, the analysis of the results obtained using new indexes of regional dyssynchrony, suggests that pacing site may influence overall global ventricular function depending on its relative effects on regional function and synchrony. Another clinical problem that has been investigated in this work is the optimal right ventricular lead location for CRT (Chapter 6.d.). Similarly to the previous analysis, using novel parameters describing local synchrony and efficiency, we tested the hypothesis and we demonstrated that biventricular pacing with alternative right ventricular pacing sites produces acute improvement of ventricular systolic function and improves mechanical synchrony when compared to standard right ventricular pacing. Although no specific right ventricular location was shown to be superior during CRT, the right ventricular pacing site that produced the optimal acute hemodynamic response varied between patients. Acute hemodynamic effects of cardiac pacing are conventionally evaluated after stabilization episodes. The applied duration of stabilization periods in most cardiac pacing studies varied considerably. With an ad hoc protocol (Chapter 6.e.) and indexes of mechanical dyssynchrony derived by conductance catheter we demonstrated that the usage of stabilization periods during evaluation of cardiac pacing may mask early changes in systolic and diastolic intra-ventricular dyssynchrony. In fact, at the onset of ventricular pacing, the main dyssynchrony and ventricular performance changes occur within a 10s time span, initiated by the changes in ventricular mechanical dyssynchrony induced by aberrant conduction and followed by a partial or even complete recovery. It was already demonstrated in normal animals that ventricular mechanical dyssynchrony may act as a physiologic modulator of cardiac performance together with heart rate, contractile state, preload and afterload. The present observation, which shows the compensatory mechanism of mechanical dyssynchrony, suggests that ventricular dyssynchrony may be regarded as an intrinsic cardiac property, with baseline dyssynchrony at increased level in heart failure patients. To make available an independent system for cardiac output estimation, in order to confirm the results obtained with conductance volume method, we developed and validated a novel technique to apply the Modelflow method (a method that derives an aortic flow waveform from arterial pressure by simulation of a non-linear three-element aortic input impedance model, Wesseling et al. 1993) to the left ventricular pressure signal, instead of the arterial pressure used in the classical approach (Chapter 7.). The results confirmed that in patients without valve abnormalities, undergoing conductance catheter evaluations, the continuous monitoring of cardiac output using the intra-ventricular pressure signal is reliable. Thus, cardiac output can be monitored quantitatively and continuously with a simple and low-cost method. During this work, additional studies were carried out to investigate several areas of uncertainty of CRT. The results of these studies are briefly presented in Appendix: the long-term survival in patients treated with CRT in clinical practice, the effects of CRT in patients with mild symptoms of heart failure and in very old patients, the limited thoracotomy as a second choice alternative to transvenous implant for CRT delivery, the evolution and prognostic significance of diastolic filling pattern in CRT, the selection of candidates to CRT with echocardiographic criteria and the prediction of response to the therapy.
Resumo:
In the present work, the multi-objective optimization by genetic algorithms is investigated and applied to heat transfer problems. Firstly, the work aims to compare different reproduction processes employed by genetic algorithms and two new promising processes are suggested. Secondly, in this work two heat transfer problems are studied under the multi-objective point of view. Specifically, the two cases studied are the wavy fins and the corrugated wall channel. Both these cases have already been studied by a single objective optimizer. Therefore, this work aims to extend the previous works in a more comprehensive study.
Resumo:
DI Diesel engine are widely used both for industrial and automotive applications due to their durability and fuel economy. Nonetheless, increasing environmental concerns force that type of engine to comply with increasingly demanding emission limits, so that, it has become mandatory to develop a robust design methodology of the DI Diesel combustion system focused on reduction of soot and NOx simultaneously while maintaining a reasonable fuel economy. In recent years, genetic algorithms and CFD three-dimensional combustion simulations have been successfully applied to that kind of problem. However, combining GAs optimization with actual CFD three-dimensional combustion simulations can be too onerous since a large number of calculations is usually needed for the genetic algorithm to converge, resulting in a high computational cost and, thus, limiting the suitability of this method for industrial processes. In order to make the optimization process less time-consuming, CFD simulations can be more conveniently used to generate a training set for the learning process of an artificial neural network which, once correctly trained, can be used to forecast the engine outputs as a function of the design parameters during a GA optimization performing a so-called virtual optimization. In the current work, a numerical methodology for the multi-objective virtual optimization of the combustion of an automotive DI Diesel engine, which relies on artificial neural networks and genetic algorithms, was developed.
Resumo:
Logistics involves planning, managing, and organizing the flows of goods from the point of origin to the point of destination in order to meet some requirements. Logistics and transportation aspects are very important and represent a relevant costs for producing and shipping companies, but also for public administration and private citizens. The optimization of resources and the improvement in the organization of operations is crucial for all branches of logistics, from the operation management to the transportation. As we will have the chance to see in this work, optimization techniques, models, and algorithms represent important methods to solve the always new and more complex problems arising in different segments of logistics. Many operation management and transportation problems are related to the optimization class of problems called Vehicle Routing Problems (VRPs). In this work, we consider several real-world deterministic and stochastic problems that are included in the wide class of the VRPs, and we solve them by means of exact and heuristic methods. We treat three classes of real-world routing and logistics problems. We deal with one of the most important tactical problems that arises in the managing of the bike sharing systems, that is the Bike sharing Rebalancing Problem (BRP). We propose models and algorithms for real-world earthwork optimization problems. We describe the 3DP process and we highlight several optimization issues in 3DP. Among those, we define the problem related to the tool path definition in the 3DP process, the 3D Routing Problem (3DRP), which is a generalization of the arc routing problem. We present an ILP model and several heuristic algorithms to solve the 3DRP.
Resumo:
Single-screw extrusion is one of the widely used processing methods in plastics industry, which was the third largest manufacturing industry in the United States in 2007 [5]. In order to optimize the single-screw extrusion process, tremendous efforts have been devoted for development of accurate models in the last fifty years, especially for polymer melting in screw extruders. This has led to a good qualitative understanding of the melting process; however, quantitative predictions of melting from various models often have a large error in comparison to the experimental data. Thus, even nowadays, process parameters and the geometry of the extruder channel for the single-screw extrusion are determined by trial and error. Since new polymers are developed frequently, finding the optimum parameters to extrude these polymers by trial and error is costly and time consuming. In order to reduce the time and experimental work required for optimizing the process parameters and the geometry of the extruder channel for a given polymer, the main goal of this research was to perform a coordinated experimental and numerical investigation of melting in screw extrusion. In this work, a full three-dimensional finite element simulation of the two-phase flow in the melting and metering zones of a single-screw extruder was performed by solving the conservation equations for mass, momentum, and energy. The only attempt for such a three-dimensional simulation of melting in screw extruder was more than twenty years back. However, that work had only a limited success because of the capability of computers and mathematical algorithms available at that time. The dramatic improvement of computational power and mathematical knowledge now make it possible to run full 3-D simulations of two-phase flow in single-screw extruders on a desktop PC. In order to verify the numerical predictions from the full 3-D simulations of two-phase flow in single-screw extruders, a detailed experimental study was performed. This experimental study included Maddock screw-freezing experiments, Screw Simulator experiments and material characterization experiments. Maddock screw-freezing experiments were performed in order to visualize the melting profile along the single-screw extruder channel with different screw geometry configurations. These melting profiles were compared with the simulation results. Screw Simulator experiments were performed to collect the shear stress and melting flux data for various polymers. Cone and plate viscometer experiments were performed to obtain the shear viscosity data which is needed in the simulations. An optimization code was developed to optimize two screw geometry parameters, namely, screw lead (pitch) and depth in the metering section of a single-screw extruder, such that the output rate of the extruder was maximized without exceeding the maximum temperature value specified at the exit of the extruder. This optimization code used a mesh partitioning technique in order to obtain the flow domain. The simulations in this flow domain was performed using the code developed to simulate the two-phase flow in single-screw extruders.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
The procurement of transportation services via large-scale combinatorial auctions involves a couple of complex decisions whose outcome highly influences the performance of the tender process. This paper examines the shipper's task of selecting a subset of the submitted bids which efficiently trades off total procurement cost against expected carrier performance. To solve this bi-objective winner determination problem, we propose a Pareto-based greedy randomized adaptive search procedure (GRASP). As a post-optimizer we use a path relinking procedure which is hybridized with branch-and-bound. Several variants of this algorithm are evaluated by means of artificial test instances which comply with important real-world characteristics. The two best variants prove superior to a previously published Pareto-based evolutionary algorithm.
Resumo:
Dynamic systems, especially in real-life applications, are often determined by inter-/intra-variability, uncertainties and time-varying components. Physiological systems are probably the most representative example in which population variability, vital signal measurement noise and uncertain dynamics render their explicit representation and optimization a rather difficult task. Systems characterized by such challenges often require the use of adaptive algorithmic solutions able to perform an iterative structural and/or parametrical update process towards optimized behavior. Adaptive optimization presents the advantages of (i) individualization through learning of basic system characteristics, (ii) ability to follow time-varying dynamics and (iii) low computational cost. In this chapter, the use of online adaptive algorithms is investigated in two basic research areas related to diabetes management: (i) real-time glucose regulation and (ii) real-time prediction of hypo-/hyperglycemia. The applicability of these methods is illustrated through the design and development of an adaptive glucose control algorithm based on reinforcement learning and optimal control and an adaptive, personalized early-warning system for the recognition and alarm generation against hypo- and hyperglycemic events.
Resumo:
SOMS is a general surrogate-based multistart algorithm, which is used in combination with any local optimizer to find global optima for computationally expensive functions with multiple local minima. SOMS differs from previous multistart methods in that a surrogate approximation is used by the multistart algorithm to help reduce the number of function evaluations necessary to identify the most promising points from which to start each nonlinear programming local search. SOMS’s numerical results are compared with four well-known methods, namely, Multi-Level Single Linkage (MLSL), MATLAB’s MultiStart, MATLAB’s GlobalSearch, and GLOBAL. In addition, we propose a class of wavy test functions that mimic the wavy nature of objective functions arising in many black-box simulations. Extensive comparisons of algorithms on the wavy testfunctions and on earlier standard global-optimization test functions are done for a total of 19 different test problems. The numerical results indicate that SOMS performs favorably in comparison to alternative methods and does especially well on wavy functions when the number of function evaluations allowed is limited.
Resumo:
This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sorting of points for which the expensive function has been previously evaluated. The two objectives are the expensive function value of the point and the minimum distance of the point to previously evaluated points. Based on the results of non-dominated sorting, P points from the sorted fronts are selected as centers from which many candidate points are generated by random perturbations. Based on surrogate approximation, the best candidate point is subsequently selected for expensive evaluation for each of the P centers, with simultaneous computation on P processors. Centers that previously did not generate good solutions are tabu with a given tenure. We show almost sure convergence of this algorithm under some conditions. The performance of SOP is compared with two RBF based methods. The test results show that SOP is an efficient method that can reduce time required to find a good near optimal solution. In a number of cases the efficiency of SOP is so good that SOP with 8 processors found an accurate answer in less wall-clock time than the other algorithms did with 32 processors.
Resumo:
We present a novel surrogate model-based global optimization framework allowing a large number of function evaluations. The method, called SpLEGO, is based on a multi-scale expected improvement (EI) framework relying on both sparse and local Gaussian process (GP) models. First, a bi-objective approach relying on a global sparse GP model is used to determine potential next sampling regions. Local GP models are then constructed within each selected region. The method subsequently employs the standard expected improvement criterion to deal with the exploration-exploitation trade-off within selected local models, leading to a decision on where to perform the next function evaluation(s). The potential of our approach is demonstrated using the so-called Sparse Pseudo-input GP as a global model. The algorithm is tested on four benchmark problems, whose number of starting points ranges from 102 to 104. Our results show that SpLEGO is effective and capable of solving problems with large number of starting points, and it even provides significant advantages when compared with state-of-the-art EI algorithms.
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.
Resumo:
Nowadays computing platforms consist of a very large number of components that require to be supplied with diferent voltage levels and power requirements. Even a very small platform, like a handheld computer, may contain more than twenty diferent loads and voltage regulators. The power delivery designers of these systems are required to provide, in a very short time, the right power architecture that optimizes the performance, meets electrical specifications plus cost and size targets. The appropriate selection of the architecture and converters directly defines the performance of a given solution. Therefore, the designer needs to be able to evaluate a significant number of options in order to know with good certainty whether the selected solutions meet the size, energy eficiency and cost targets. The design dificulties of selecting the right solution arise due to the wide range of power conversion products provided by diferent manufacturers. These products range from discrete components (to build converters) to complete power conversion modules that employ diferent manufacturing technologies. Consequently, in most cases it is not possible to analyze all the alternatives (combinations of power architectures and converters) that can be built. The designer has to select a limited number of converters in order to simplify the analysis. In this thesis, in order to overcome the mentioned dificulties, a new design methodology for power supply systems is proposed. This methodology integrates evolutionary computation techniques in order to make possible analyzing a large number of possibilities. This exhaustive analysis helps the designer to quickly define a set of feasible solutions and select the best trade-off in performance according to each application. The proposed approach consists of two key steps, one for the automatic generation of architectures and other for the optimized selection of components. In this thesis are detailed the implementation of these two steps. The usefulness of the methodology is corroborated by contrasting the results using real problems and experiments designed to test the limits of the algorithms.
Resumo:
This paper describes the basic tools to work with wireless sensors. TinyOShas a componentbased architecture which enables rapid innovation and implementation while minimizing code size as required by the severe memory constraints inherent in sensor networks. TinyOS's component library includes network protocols, distributed services, sensor drivers, and data acquisition tools ? all of which can be used asia or be further refined for a custom application. TinyOS was originally developed as a research project at the University of California Berkeley, but has since grown to have an international community of developers and users. Some algorithms concerning packet routing are shown. Incar entertainment systems can be based on wireless sensors in order to obtain information from Internet, but routing protocols must be implemented in order to avoid bottleneck problems. Ant Colony algorithms are really useful in such cases, therefore they can be embedded into the sensors to perform such routing task.