950 resultados para Clustering over U-Matrix
Resumo:
Increasing evidence suggest that the long "untranslated" region (UTR) between the matrix (M) and the fusion (F) proteins of morbilliviruses has a functional role. In canine distemper virus (CDV), the F 5' UTR was recently shown to code for a long F signal peptide (Fsp). Subsequently, it was reported that the M/F UTRs combined with the long Fsp were synergistically regulating the F mRNA and protein expression, thereby modulating virulence. Unique to CDV, a short putative open reading frame (ORF) has been identified within the wild-type CDV-M 3' UTR (termed M2). Here, we investigated whether M2 was expressed from the genome of the virulent and demyelinating A75/17-CDV strain. An expression plasmid encoding the M2 ORF tagged both at its N-terminal (HA) and C-terminal domains (RFP), was first constructed. Then, a recombinant virus with its putative M2 ORF replaced by HA-M2-RFP was successfully recovered from cDNA (termed recA75/17(green)-HA-M2-RFP). M2 expression in cells transfected or infected with these mutants was studied by immunoprecipitation, immunofluorescence, immunoblot and flow cytometry analyses. Although fluorescence was readily detected in HA-M2-RFP-transfected cells, absence of red fluorescence emission in several recA75/17(green)-HA-M2-RFP-infected cell types suggested lack of M2 biosynthesis, which was confirmed by the other techniques. Consistent with these data, no functional role of the short polypeptide was revealed by infecting various cell types with HA-M2-RFP over-expressing or M2-knockout recombinant viruses. Thus, in sharp contrast to the CDV-F 5' UTR reported to translate a long Fsp, our data provided evidence that the CDV-M 3' UTR does not express any polypeptides.
Resumo:
Since the 1980s, the prevalence of obesity has more than doubled to over 30 percent of the adult population (Thorpe, 2004). Obesity is a key contributing factor to continually rising national healthcare costs. Addressing its negative implications is essential not only from a cost perspective, but also for the betterment of our nation¿s general health and wellbeing. Obesity is reportedly associated with a 35% increase in inpatient and outpatient spending, as well as a 77% increase in related necessary medications (Sturm, 2002). Obesity, which some have argued should be classified as a disease in itself, has roughly the same association with the development of chronic health conditions as does 20 years of aging (Sturm, 2002). Defined as ambulatory care-sensitive conditions, these obesity-related chronic health diagnoses ¿ like diabetes, cardiovascular disease, and hypertension ¿ are in turn the primary drivers of current healthcare spending, as well as future predicted health expenditures. It is well established that lower socioeconomic status (SES) is associated with higher rates of obesity and the subsequent development of aforementioned obesity-related conditions. Socioeconomic status has traditionally been defined by education, income, and occupation (Adler, 2002); however, this study found empirical evidence for education being the most fundamental of these three SES indicators in determining obesity outcomes. For both men and women, as education levels increased, the likelihood of an individual being obese decreased. However, with less education, there was increased disparity between the obesity rates for men and women. Women consistently saw higher rates of obesity and were more impacted in terms of obesity onset by belonging to a lower SES category than men. In addition, this study assessed whether the impact of one¿s socioeconomic status on obesity-related health outcomes (specifically the negative impact low-SES as measured by education level) has changed over time. Results deriving from annual data from the National Health Interview Survey (NHIS) for all years from 2002 to 2012 indicate that the association between low-socioeconomic status and negative health outcomes has not increased in magnitude over the past decade. Instead, obesity rates have increased across the overall U.S. adult population, most likely due to a number of larger external societal factors resulting in increased caloric intake and decreased energy expenditure across every SES group. In addition, while the association between low-SES and obesity has not worsened, a consequence of the Great Recession has been a larger percentage of the U.S. population in lower-SES, which is still consistently subject to the same worse health outcomes.
Resumo:
For smart applications, nodes in wireless multimedia sensor networks (MWSNs) have to take decisions based on sensed scalar physical measurements. A routing protocol must provide the multimedia delivery with quality level support and be energy-efficient for large-scale networks. With this goal in mind, this paper proposes a smart Multi-hop hierarchical routing protocol for Efficient VIdeo communication (MEVI). MEVI combines an opportunistic scheme to create clusters, a cross-layer solution to select routes based on network conditions, and a smart solution to trigger multimedia transmission according to sensed data. Simulations were conducted to show the benefits of MEVI compared with the well-known Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. This paper includes an analysis of the signaling overhead, energy-efficiency, and video quality.
Resumo:
We investigated the protein expression of gelatinases [matrix metalloproteinase (MMP)-2 and -9] and collagenases (MMP-8 and -13) in cerebrospinal fluid (CSF) from patients with bacterial (BM, n = 17) and aseptic (AM, n = 14) meningitis. In both, MMP-8 and -9 were increased in 100% of patients, whereas MMP-13 was detectable in 53% and 82% respectively. Three patients with clinical signs of meningitis, without CSF pleocytosis, scored positive for all three MMPs. MMP-8 appeared in two isoforms, granulocyte-type [polymorphonuclear cell (PMN)] and fibroblast/macrophage (F/M) MMP-8. Analysis of kinetic changes from serial lumbar punctures showed that these MMPs are independently regulated, and correlate only partly with CSF cytosis or levels of the endogenous inhibitor, tissue inhibitor of matrix metalloproteinase-1. In vitro, T cells, peripheral blood mononuclear cells (PBMCs) and granulocytes (PMN) release MMP-8 and -9, whereas MMP-13 could be found only in the former two cell types. Using models of exogenous (n-formyl-Met-Leu-Phe, T cell receptor cross-linking) and host-derived stimuli (interleukin-2), the kinetics and the release of the MMP-8, -9 and -13 showed strong variation between these immune cells and suggest release from preformed stocks. In addition, MMP-9 is also synthesized de novo in PBMCs and T cells. In conclusion, invading immune cells contribute only partially to MMPs in CSF during meningitis, and parenchymal cells are an equally relevant source. In this context, in patients with clinical signs of meningitis, but without CSF pleocytosis, MMPs seem to be a highly sensitive marker for intrathecal inflammation. The present data support the concept that broad-spectrum enzyme inhibition targeting gelatinases and collagenases is a potential strategy for adjunctive therapy in infectious meningitis.
Resumo:
In a 5-year study involving 119 postmenopausal women, zoledronic acid 4 mg given once-yearly for 2, 3 or 5 years was well tolerated with no evidence of excessive bone turnover reduction or any safety signals. BMD increased significantly. Bone turnover markers decreased from baseline and were maintained within premenopausal reference ranges. INTRODUCTION: After completion of the core study, two consecutive, 2-year, open-label extensions investigated the efficacy and safety of zoledronic acid 4 mg over 5 years in postmenopausal osteoporosis. METHODS: In the core study, patients received 1 to 4 mg zoledronic acid or placebo. In the first extension, most patients received 4 mg per year and then patients entered the second extension and received 4 mg per year or calcium only. Patients were divided into three subgroups according to years of active treatment received (2, 3 or 5 years). Changes in BMD and bone turnover markers (bone ALP and CTX-I) were assessed. RESULTS: All subgroups showed substantial increases in BMD and decreases in bone markers. By the end of the core study, 37.5% of patients revealed a suboptimal reduction (< 30%) of bone ALP levels. After subsequent study drug administration during the extensions, there was no evidence of progressive reduction of bone turnover markers. Furthermore, increased marker levels after treatment discontinuation demonstrates preservation of bone remodelling capacity. CONCLUSIONS: This study showed that zoledronic acid 4 mg once-yearly was well tolerated and effective in reducing biomarkers over 5 years. Detailed analysis of bone marker changes, however, suggests that this drug regimen causes insufficient reduction of remodelling activity in one third of patients.
Resumo:
Deproteinized bovine bone mineral (DBBM) (Bio-Oss®, Geistlich-Pharma, Wohlhusen, Switzerland) is widely used as a bone substitute for the preservation or augmentation of bone volume. After implantation near native bone, new bone may form around the DBBM particles. Since DBBM is very resistant to resorption, it will hardly ever be replaced by bone and, therefore, the mechanical stability largely depends on the extent of bridging between the newly formed bone and the DBBM particles. The molecular factors responsible for the deposition of new bone to the DBBM particles have not been determined. The aim of this study was, therefore, to test the hypothesis that DBBM implanted near bone take up bone-related matrix proteins that are involved in cell-matrix interactions. Cylindrical biopsies harvested from tooth extraction sites filled with DBBM particles were fixed in aldehydes, decalcified, and embedded in LR White resin. Thin sections were incubated with antibodies against bone sialoprotein (BSP) and osteopontin (OPN), two bone proteins involved in cell attachment, signaling, and mineralization. High-resolution immunogold labeling was used to examine protein distribution. BSP and OPN were immunodetected in all DBBM particles and yielded an identical distribution pattern. Most gold particles were found over the peripheral DBBM matrix, although some peripheral regions lacked immunolabeling. The bulk of the interior DBBM portion was mainly free of labeling with the exception of the peripheral matrix of some osteocyte lacunae and canaliculi. It is concluded that DBBM selectively takes up at least BSP and OPN after its implantation at a bone site. BSP and OPN or other molecules accommodating in DBBM may modulate events associated with cell attachment and differentiation.
Resumo:
A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.
Resumo:
Whereas a non-operative approach for hemodynamically stable patients with free intraabdominal fluid in the presence of solid organ injury is generally accepted, the presence of free fluid in the abdomen without evidence of solid organ injury not only presents a challenge for the treating emergency physician but also for the surgeon in charge. Despite recent advances in imaging modalities, with multi-detector computed tomography (CT) (with or without contrast agent) usually the imaging method of choice, diagnosis and interpretation of the results remains difficult. While some studies conclude that CT is highly accurate and relatively specific at diagnosing mesenteric and hollow viscus injury, others studies deem CT to be unreliable. These differences may in part be due to the experience and the interpretation of the radiologist and/or the treating physician or surgeon.A search of the literature has made it apparent that there is no straightforward answer to the question what to do with patients with free intraabdominal fluid on CT scanning but without signs of solid organ injury. In hemodynamically unstable patients, free intraabdominal fluid in the absence of solid organ injury usually mandates immediate surgical intervention. For patients with blunt abdominal trauma and more than just a trace of free intraabdominal fluid or for patients with signs of peritonitis, the threshold for a surgical exploration - preferably by a laparoscopic approach - should be low. Based on the available information, we aim to provide the reader with an overview of the current literature with specific emphasis on diagnostic and therapeutic approaches to this problem and suggest a possible algorithm, which might help with the adequate treatment of such patients.
Resumo:
Enamel matrix derivative (EMD), a porcine extract harvested from developing porcine teeth, has been shown to promote formation of new cementum, periodontal ligament and alveolar bone. Despite its widespread use, an incredibly large variability among in vitro studies has been observed. The aim of the present study was to determine the influence of EMD on cells at different maturation stages of osteoblast differentiation by testing 6 cell types to determine if cell phenotype plays a role in cell behaviour following treatment with EMD. Six cell types including MC3T3-E1 pre-osteoblasts, rat calvarial osteoblasts, human periodontal ligament (PDL) cells, ROS cells, MG63 cells and human alveolar osteoblasts were cultured in the presence or absence of EMD and proliferation rates were quantified by an MTS assay. Gene expression of collagen1(COL1), alkaline phosphate(ALP) and osteocalcin(OC) were investigated by real-time PCR. While EMD significantly increased cell proliferation of all cell types, its effect on osteoblast differentiation was more variable. EMD significantly up-regulated gene expression of COL1, ALP and OC in cells early in their differentiation process when compared to osteoblasts at later stages of maturation. Furthermore, the effect of cell passaging of primary human PDL cells (passage 2 to 15) was tested in response to treatment with EMD. EMD significantly increased cell proliferation and differentiation of cells at passages 2-5 however had completely lost their ability to respond to EMD by passages 10+. The results from the present study suggest that cell stimulation with EMD has a more pronounced effect on cells earlier in their differentiation process and may partially explain why treatment with EMD primarily favors regeneration of periodontal defects (where the periodontal ligament contains a higher number of undifferentiated progenitor cells) over regeneration of pure alveolar bone defects containing no periodontal ligament and a more limited number of osteoprogenitor cells.
Resumo:
BACKGROUND The purpose of the present study is to evaluate the 10-year results following treatment of intrabony defects treated with an enamel matrix protein derivative (EMD) combined with either a natural bone mineral (NBM) or β-tricalcium phosphate (β-TCP). METHODS Twenty-two patients with advanced chronic periodontitis and displaying one deep intrabony defect were randomly treated with a combination of either EMD + NBM or EMD + β-TCP. Clinical evaluations were performed at baseline and at 1 and 10 years. The following parameters were evaluated: plaque index, bleeding on probing, probing depth, gingival recession, and clinical attachment level (CAL). The primary outcome variable was CAL. RESULTS The defects treated with EMD + NBM demonstrated a mean CAL change from 8.9 ± 1.5 mm to 5.3 ± 0.9 mm (P <0.001) and to 5.8 ± 1.1 mm (P <0.001) at 1 and 10 years, respectively. The sites treated with EMD + β-TCP showed a mean CAL change from 9.1 ± 1.6 mm to 5.4 ± 1.1 mm (P <0.001) at 1 year and 6.1 ± 1.4 mm (P <0.001) at 10 years. At 10 years two defects in the EMD + NBM group had lost 2 mm, whereas two other defects had lost 1 mm of the CAL gained at 1 year. In the EMD + β-TCP group three defects had lost 2 mm, whereas two other defects had lost 1 mm of the CAL gained at 1 year. Compared with baseline, at 10 years, a CAL gain of ≥3 mm was measured in 64% (i.e., seven of 11) of the defects in the EMD + NBM group and in 82% (i.e., nine of 11) of the defects in the EMD + β-TCP group. No statistically significant differences were found between the 1- and 10-year values in either of the two groups. Between the treatment groups, no statistically significant differences in any of the investigated parameters were observed at 1 and 10 years. CONCLUSION Within their limitations, the present findings indicate that the clinical improvements obtained with regenerative surgery using EMD + NBM or EMD + β-TCP can be maintained over a period of 10 years.