966 resultados para Cloning of cDNA encoding Large isoform of rubisco activase
Resumo:
Niemann–Pick disease type C (NP-C) is an autosomal recessive lipidosis linked to chromosome 18q11–12, characterized by lysosomal accumulation of unesterified cholesterol and delayed induction of cholesterol-mediated homeostatic responses. This cellular phenotype is identifiable cytologically by filipin staining and biochemically by measurement of low-density lipoprotein-derived cholesterol esterification. The mutant Chinese hamster ovary cell line (CT60), which displays the NP-C cellular phenotype, was used as the recipient for a complementation assay after somatic cell fusions with normal and NP-C murine cells suggested that this Chinese hamster ovary cell line carries an alteration(s) in the hamster homolog(s) of NP-C. To narrow rapidly the candidate interval for NP-C, three overlapping yeast artificial chromosomes (YACs) spanning the 1 centimorgan human NP-C interval were introduced stably into CT60 cells and analyzed for correction of the cellular phenotype. Only YAC 911D5 complemented the NP-C phenotype, as evidenced by cytological and biochemical analyses, whereas no complementation was obtained from the other two YACs within the interval or from a YAC derived from chromosome 7. Fluorescent in situ hybridization indicated that YAC 911D5 was integrated at a single site per CT60 genome. These data substantially narrow the NP-C critical interval and should greatly simplify the identification of the gene responsible in mouse and man. This is the first demonstration of YAC complementation as a valuable adjunct strategy for positional cloning of a human gene.
Resumo:
The Drosophila melanogaster Suppressor of forked [Su(f)] protein shares homology with the yeast RNA14 protein and the 77-kDa subunit of human cleavage stimulation factor, which are proteins involved in mRNA 3′ end formation. This suggests a role for Su(f) in mRNA 3′ end formation in Drosophila. The su(f) gene produces three transcripts; two of them are polyadenylated at the end of the transcription unit, and one is a truncated transcript, polyadenylated in intron 4. Using temperature-sensitive su(f) mutants, we show that accumulation of the truncated transcript requires wild-type Su(f) protein. This suggests that the Su(f) protein autoregulates negatively its accumulation by stimulating 3′ end formation of the truncated su(f) RNA. Cloning of su(f) from Drosophila virilis and analysis of its RNA profile suggest that su(f) autoregulation is conserved in this species. Sequence comparison between su(f) from both species allows us to point out three conserved regions in intron 4 downstream of the truncated RNA poly(A) site. These conserved regions include the GU-rich downstream sequence involved in poly(A) site definition. Using transgenes truncated within intron 4, we show that sequence up to the conserved GU-rich domain is sufficient for production of the truncated RNA and for regulation of this production by su(f). Our results indicate a role of su(f) in the regulation of poly(A) site utilization and an important role of the GU-rich sequence for this regulation to occur.
Resumo:
S-adenosyl-l-methionine (SAM)-dependent O-methyltransferases (OMTs) catalyze the methylation of hydroxycinnamic acid derivatives for the synthesis of methylated plant polyphenolics, including lignin. The distinction in the extent of methylation of lignins in angiosperms and gymnosperms, mediated by substrate-specific OMTs, represents one of the fundamental differences in lignin biosynthesis between these two classes of plants. In angiosperms, two types of structurally and functionally distinct lignin pathway OMTs, caffeic acid 3-O-methyltransferases (CAOMTs) and caffeoyl CoA 3-O-methyltransferases (CCoAOMTs), have been reported and extensively studied. However, little is known about lignin pathway OMTs in gymnosperms. We report here the first cloning of a loblolly pine (Pinus taeda) xylem cDNA encoding a multifunctional enzyme, SAM:hydroxycinnamic Acids/hydroxycinnamoyl CoA Esters OMT (AEOMT). The deduced protein sequence of AEOMT is partially similar to, but clearly distinguishable from, that of CAOMTs and does not exhibit any significant similarity with CCoAOMT protein sequences. However, functionally, yeast-expressed AEOMT enzyme catalyzed the methylation of CAOMT substrates, caffeic and 5-hydroxyferulic acids, as well as CCoAOMT substrates, caffeoyl CoA and 5-hydroxyferuloyl CoA esters, with similar specific activities and was completely inactive with substrates associated with flavonoid synthesis. The lignin-related substrates were also efficiently methylated in crude extracts of loblolly pine secondary xylem. Our results support the notion that, in the context of amino acid sequence and biochemical function, AEOMT represents a novel SAM-dependent OMT, with both CAOMT and CCoAOMT activities and thus the potential to mediate a dual methylation pathway in lignin biosynthesis in loblolly pine xylem.
Resumo:
We report the identification and cloning of a 28-kDa polypeptide (p28) in Tetrahymena macronuclei that shares several features with the well studied heterochromatin-associated protein HP1 from Drosophila. Notably, like HP1, p28 contains both a chromodomain and a chromoshadow domain. p28 also shares features with linker histone H1, and like H1, p28 is multiply phosphorylated, at least in part, by a proline-directed, Cdc2-type kinase. As such, p28 is referred to as Hhp1p (for H1/HP1-like protein). Hhp1p is missing from transcriptionally silent micronuclei but is enriched in heterochromatin-like chromatin bodies that presumably comprise repressed chromatin in macronuclei. These findings shed light on the evolutionary conserved nature of heterochromatin in organisms ranging from ciliates to humans and provide further evidence that HP1-like proteins are not exclusively associated with permanently silent chromosomal domains. Our data support a view that members of this family also associate with repressed states of euchromatin.
Resumo:
When treated with heat-killed bacterial cells, mosquito cells in culture respond by up-regulating several proteins. Among these is a 66-kDa protein (p66) that is secreted from cells derived from both Aedes aegypti and Aedes albopictus. p66 was degraded by proteolysis and gave a virtually identical pattern of peptide products for each mosquito species. The sequence of one peptide (31 amino acids) was determined and found to have similarity to insect transferrins. By using conserved regions of insect transferrin sequences, degenerate oligonucleotide PCR primers were designed and used to isolate a cDNA clone encoding an A. aegypti transferrin. The encoded protein contained a signal sequence that, when cleaved, would yield a mature protein of 68 kDa. It contained the 31-amino acid peptide, and the 3′ end exactly matched a cDNA encoding a polypeptide that is up-regulated when A. aegypti encapsulates filarial worms [Beerntsen, B. T., Severson, D. W. & Christensen, B. M. (1994) Exp. Parasitol. 79, 312–321]. This transferrin, like those of two other insect species, has conserved iron-binding residues in the N-terminal lobe but not in the C-terminal lobe, which also has large deletions in the polypeptide chain, compared with transferrins with functional C-terminal lobes. The hypothesis is developed that this transferrin plays a role similar to vertebrate lactoferrin in sequestering iron from invading organisms and that degradation of the structure of the C-terminal lobe might be a mechanism for evading pathogens that elaborate transferrin receptors to tap sequestered iron.
Resumo:
p53 tumor suppressor protein negatively regulates cell growth, mainly through the transactivation of its downstream target genes. As a sequence-specific DNA binding transcription factor, p53 specifically binds to a 20-bp consensus motif 5′-PuPuPuC(A/T) (T/A)GPyPyPyPuPuPuC(A/T)(T/A)GPyPyPy-3′. We have now identified, partially purified, and characterized an additional ≈40-kDa nuclear protein, p53CP (p53 competing protein), that specifically binds to the consensus p53 binding sites found in several p53 downstream target genes, including Waf-1, Gadd45, Mdm2, Bax, and RGC. The minimal sequence requirement for binding is a 14-bp motif, 5′-CTTGCTTGAACAGG-3′ [5′-C(A/T)(T/A)GPyPyPyPuPuPuC(A/T)(T/A)G-3′], which includes the central nucleotides of the typical p53 binding site with one mismatch. p53CP and p53 (complexed with antibody) showed a similar binding specificity to Waf-1 site but differences in Gadd45 and T3SF binding. Like p53, p53CP also binds both double- and single-stranded DNA oligonucleotides. Important to note, cell cycle blockers and DNA damaging reagents, which induce p53 binding activity, were found to inhibit p53CP binding in p53-positive, but not in p53-negative, cells. This finding suggested a p53-dependent coordinate regulation of p53 and p53CP in response to external stimuli. p53CP therefore could be a third member of the p53 family, in addition to p53 and p73, a newly identified p53 homolog. p53CP, if sequestering p53 from its DNA binding sites through competitive binding, may provide a novel mechanism of p53 inactivation. Alternatively, p53CP may have p53-like functions by binding and transactivating p53 downstream target genes. Cloning of the p53CP gene ultimately will resolve this issue.
Resumo:
Escherichia coli selenophosphate synthetase (SPS, the selD gene product) catalyzes the production of monoselenophosphate, the selenium donor compound required for synthesis of selenocysteine (Sec) and seleno-tRNAs. We report the molecular cloning of human and mouse homologs of the selD gene, designated Sps2, which contains an in-frame TGA codon at a site corresponding to the enzyme’s putative active site. These sequences allow the identification of selD gene homologs in the genomes of the bacterium Haemophilus influenzae and the archaeon Methanococcus jannaschii, which had been previously misinterpreted due to their in-frame TGA codon. Sps2 mRNA levels are elevated in organs previously implicated in the synthesis of selenoproteins and in active sites of blood cell development. In addition, we show that Sps2 mRNA is up-regulated upon activation of T lymphocytes and have mapped the Sps2 gene to mouse chromosome 7. Using the mouse gene isolated from the hematopoietic cell line FDCPmixA4, we devised a construct for protein expression that results in the insertion of a FLAG tag sequence at the N terminus of the SPS2 protein. This strategy allowed us to document the readthrough of the in-frame TGA codon and the incorporation of 75Se into SPS2. These results suggest the existence of an autoregulatory mechanism involving the incorporation of Sec into SPS2 that might be relevant to blood cell biology. This mechanism is likely to have been present in ancient life forms and conserved in a variety of living organisms from all domains of life.
Resumo:
A high-resolution physical and genetic map of a major fruit weight quantitative trait locus (QTL), fw2.2, has been constructed for a region of tomato chromosome 2. Using an F2 nearly isogenic line mapping population (3472 individuals) derived from Lycopersicon esculentum (domesticated tomato) × Lycopersicon pennellii (wild tomato), fw2.2 has been placed near TG91 and TG167, which have an interval distance of 0.13 ± 0.03 centimorgan. The physical distance between TG91 and TG167 was estimated to be ≤ 150 kb by pulsed-field gel electrophoresis of tomato DNA. A physical contig composed of six yeast artificial chromosomes (YACs) and encompassing fw2.2 was isolated. No rearrangements or chimerisms were detected within the YAC contig based on restriction fragment length polymorphism analysis using YAC-end sequences and anchored molecular markers from the high-resolution map. Based on genetic recombination events, fw2.2 could be narrowed down to a region less than 150 kb between molecular markers TG91 and HSF24 and included within two YACs: YAC264 (210 kb) and YAC355 (300 kb). This marks the first time, to our knowledge, that a QTL has been mapped with such precision and delimited to a segment of cloned DNA. The fact that the phenotypic effect of the fw2.2 QTL can be mapped to a small interval suggests that the action of this QTL is likely due to a single gene. The development of the high-resolution genetic map, in combination with the physical YAC contig, suggests that the gene responsible for this QTL and other QTLs in plants can be isolated using a positional cloning strategy. The cloning of fw2.2 will likely lead to a better understanding of the molecular biology of fruit development and to the genetic engineering of fruit size characteristics.
Resumo:
The congenital nemaline myopathies are rare hereditary muscle disorders characterized by the presence in the muscle fibers of nemaline bodies consisting of proteins derived from the Z disc and thin filament. In a single large Australian family with an autosomal dominant form of nemaline myopathy, the disease is caused by a mutation in the α-tropomyosin gene TPM3. The typical form of nemaline myopathy is inherited as an autosomal recessive trait, the locus of which we previously assigned to chromosome 2q21.2-q22. We show here that mutations in the nebulin gene located within this region are associated with the disease. The nebulin protein is a giant protein found in the thin filaments of striated muscle. A variety of nebulin isoforms are thought to contribute to the molecular diversity of Z discs. We have studied the 3′ end of the 20.8-kb cDNA encoding the Z disc part of the 800-kDa protein and describe six disease-associated mutations in patients from five families of different ethnic origins. In two families with consanguineous parents, the patients were homozygous for point mutations. In one family with nonconsanguineous parents, the affected siblings were compound heterozygotes for two different mutations, and in two further families with one detected mutation each, haplotypes are compatible with compound heterozygosity. Immunofluorescence studies with antibodies specific to the C-terminal region of nebulin indicate that the mutations may cause protein truncation possibly associated with loss of fiber-type diversity, which may be relevant to disease pathogenesis.
Resumo:
Jasmonic acid (JA) and its precursor 12-oxophytodienoic acid (OPDA) act as plant growth regulators and mediate responses to environmental cues. To investigate the role of these oxylipins in anther and pollen development, we characterized a T-DNA-tagged, male-sterile mutant of Arabidopsis, opr3. The opr3 mutant plants are sterile but can be rendered fertile by exogenous JA but not by OPDA. Cloning of the mutant locus indicates that it encodes an isozyme of 12-oxophytodienoate reductase, designated OPR3. All of the defects in opr3 are alleviated by transformation of the mutant with an OPR3 cDNA. Our results indicate that JA and not OPDA is the signaling molecule that induces and coordinates the elongation of the anther filament, the opening of the stomium at anthesis, and the production of viable pollen. Just as importantly, our data demonstrate that OPR3 is the only isoform of OPR capable of reducing the correct stereoisomer of OPDA to produce JA required for male gametophyte development.
Resumo:
Host-encoded factors play an important role in virus multiplication, acting in concert with virus-encoded factors. However, information regarding the host factors involved in this process is limited. Here we report the map-based cloning of an Arabidopsis thaliana gene, TOM1, which is necessary for the efficient multiplication of tobamoviruses, positive-strand RNA viruses infecting a wide variety of plants. The TOM1 mRNA is suggested to encode a 291-aa polypeptide that is predicted to be a multipass transmembrane protein. The Sos recruitment assay supported the hypothesis that TOM1 is associated with membranes, and in addition, that TOM1 interacts with the helicase domain of tobamovirus-encoded replication proteins. Taken into account that the tobamovirus replication complex is associated with membranes, we propose that TOM1 participates in the in vivo formation of the replication complex by serving as a membrane anchor.
Resumo:
IL-10-related T cell-derived inducible factor (IL-TIF or IL-21) is a new cytokine structurally related to IL-10 and originally identified in the mouse as a gene induced by IL-9 in T cells and mast cells. Here, we report the cloning of the human IL-TIF cDNA, which shares 79% amino acid identity with mouse IL-TIF and 25% identity with human IL-10. Recombinant human IL-TIF was found to activate signal transducer and activator of transcription factors-1 and -3 in several hepatoma cell lines. IL-TIF stimulation of HepG2 human hepatoma cells up-regulated the production of acute phase reactants such as serum amyloid A, α1-antichymotrypsin, and haptoglobin. Although IL-10 and IL-TIF have distinct activities, antibodies directed against the β chain of the IL-10 receptor blocked the induction of acute phase reactants by IL-TIF, indicating that this chain is a common component of the IL-10 and IL-TIF receptors. Similar acute phase reactant induction was observed in mouse liver upon IL-TIF injection, and IL-TIF expression was found to be rapidly increased after lipopolysaccharide (LPS) injection, suggesting that this cytokine contributes to the inflammatory response in vivo.
Resumo:
The proline-rich γ-carboxyglutamic acid (Gla) proteins (PRGPs) 1 and 2 are the founding members of a family of vitamin K-dependent single-pass integral membrane proteins characterized by an extracellular amino terminal domain of approximately 45 amino acids that is rich in Gla. The intracellular carboxyl terminal region of these two proteins contains one or two copies of the sequence PPXY, a motif present in a variety of proteins involved in such diverse cellular functions as signal transduction, cell cycle progression, and protein turnover. In this report, we describe the cloning of the cDNAs for two additional human transmembrane Gla proteins (TMG) of 20–24 kDa named TMG3 and TMG4. These two proteins possess extracellular Gla domains with 13 or 9 potential Gla residues, respectively, followed by membrane-spanning hydrophobic regions and cytoplasmic carboxyl terminal regions that contain PPXY motifs. This emerging family of integral membrane Gla proteins includes proline-rich Gla protein (PRGP) 1, PRGP2, TMG3, and TMG4, all of which are characterized by broad and variable distribution in both fetal and adult tissues. Members of this family can be grouped into two subclasses on the basis of their gene organization and amino acid sequence. These observations suggest novel physiological functions for vitamin K beyond its known role in the biosynthesis of proteins involved in blood coagulation and bone development. The identification and characterization of these proteins may allow a more complete understanding of the teratogenic consequences of exposure in utero to vitamin K antagonists, such as warfarin-based anticoagulants.
Resumo:
Feedback regulation of photosynthesis by carbon metabolites has long been recognized, but the underlying cellular mechanisms that control this process remain unclear. By using an Arabidopsis cell culture, we show that a block in photosynthetic electron flux prevents the increase in transcript levels of chlorophyll a/b-binding protein and the small subunit of Rubisco that typically occurs when intracellular sugar levels are depleted. In contrast, the expression of the nitrate reductase gene, which is induced by sugars, is not affected. These findings were confirmed in planta by using Arabidopsis carrying the firefly luciferase reporter gene fused to the plastocyanin and chlorophyll a/b-binding protein 2 gene promoters. Transcription from both promoters increases on carbohydrate depletion. Blocking photosynthetic electron transport with 3-(3′, 4′-dichlorophenyl)-1,1′-dimethylurea prevents this increase in transcription. We conclude that plastid-derived redox signaling can override the sugar-regulated expression of nuclear-encoded photosynthetic genes. In the sugar-response mutant, sucrose uncoupled 6 (sun6), plastocyanin-firefly luciferase transcription actually increases in response to exogenous sucrose rather than decreasing as in the wild type. Interestingly, plastid-derived redox signals do not influence this defective pattern of sugar-regulated gene expression in the sun6 mutant. A model, which invokes a positive inducer originating from the photosynthetic electron transport chain, is proposed to explain the nature of the plastid-derived signal.
Resumo:
We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene.