1000 resultados para Cibicidoides spp., d18O


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Multi-Sensor Core Logger (MSCL) enables non-destructive, quasi-continuous measuroments of physical properties, reducing the time needed for discrete sample analysis. Density, compressional wave velocity (Vp), and magnetic susceptibility are measured on water-saturated sediment cores. Rapid variations in the lithology can thus be more easily recognized. The advantages of MSCL measurements over traditional sedimentological investigation methods are illustrated using several examples. Density-Vp relationships provide detailed lithological information prior to splitting the sediment cores. In terrigenous sediments, density increases with Vp, whereas in biogenic sediments it decreases. In biogenic sediments in the South Atlantic, low densities and high Vp are associated with high opal content. In biogenic sediments in the Peru Basin, density increases with carbonate content. Carbonate, which is very important for deep-sea environmental protection and for paleoclimatic studies, can be determined quantitatively from MSCL measurements in this area. In terrigenous sediments in the Bengal Fan, the acoustic impedance (the product of density and Vp) increases with grain size. There, the grain-size distribution can be rapidly derived from the acoustic impedance. Moreover, in hemipelagic sediments in the Bengal Fan, it is possible to correlate variations in magnetic susceptibility with cyclic changes in the earth's orbital parameters - an important prerequisite for detailed stratigraphic studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Based on the study of 10 sediment cores and 40 core-top samples from the South China Sea (SCS) we obtained proxy records of past changes in East Asian monsoon climate on millennial to bidecadal time scales over the last 220,000 years. Climate proxies such as global sea level, estimates of paleotemperature, salinity, and nutrients in surface water, ventilation of deep water, paleowind strength, freshwater lids, fluvial and/or eolian sediment supply, and sediment winnowing on the sea floor were derived from planktonic and benthic stable-isotope records, the distribution of siliciclastic grain sizes, planktonic foraminifera species, and the UK37 biomarker index. Four cores were AMS-14C-dated. Two different regimes of monsoon circulation dominated the SCS over the last two glacial cycles, being linked to the minima and maxima of Northern Hemisphere solar insolation. (1) Glacial stages led to a stable estuarine circulation and a strong O2-minimum layer via a closure of the Borneo sea strait. Strong northeast monsoon and cool surface water occurred during winter, in part fed by an inflow from the north tip of Luzon. In contrast, summer temperatures were as high as during interglacials, hence the seasonality was strong. Low wetness in subtropical South China was opposed to large river input from the emerged Sunda shelf, serving as glacial refuge for tropical forest. (2) Interglacials were marked by a strong inflow of warm water via the Borneo sea strait, intense upwelling southeast of Vietnam and continental wetness in China during summer, weaker northeast monsoon and high sea-surface temperatures during winter, i.e. low seasonality. On top of the long-term variations we found millennial- to centennial-scale cold and dry, warm and humid spells during the Holocene, glacial Terminations I and II, and Stage 3. The spells were coeval with published variations in the Indian monsoon and probably, with the cold Heinrich and warm Dansgaard-Oeschger events recorded in Greenland ice cores, thus suggesting global climatic teleconnections. Holocene oscillations in the runoff from South China centered around periodicities of 775 years, ascribed to subharmonics of the 1500-year cycle in oceanic thermohaline circulation. 102/84-year cycles are tentatively assigned to the Gleissberg period of solar activity. Phase relationships among various monsoon proxies near the onset of Termination IA suggest that summer-monsoon rains and fluvial runoff from South China had already intensified right after the last glacial maximum (LGM) insolation minimum, coeval with the start of Antarctic ice melt, prior to the d18O signals of global sea-level rise. Vice versa, the strength of winter-monsoon winds decreased in short centennial steps only 3000-4000 years later, along with the melt of glacial ice sheets in the Northern Hemisphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first detailed stratigraphic record from a deep-water carbonate mound in the Northeast Atlantic based on absolute datings (U/Th and AMS 14C) and stable oxygen isotope records reveals that its top sediment sequences are condensed by numerous hiatuses. According to stable isotope data, mainly sediments with an intermediate signal are preserved on the mound, while almost all fully glacial and interglacial sediments have either not been deposited or have been eroded later. The resulting hiatuses reduce the Late Pleistocene sediment accumulation at Propeller Mound to amounts smaller than the background sedimentation. The hiatuses most likely result due to the sweeping of the mound in turn with the re-establishment of vigour interglacial circulation patterns after sluggish current regimes during glacials. Thus, within the discussion if internal, fluid-driven or external environmentally driven processes control the evolution of such carbonate mounds, our findings for Propeller Mound clearly point to environmental forcing as the dominant mechanism shaping deep-water carbonate mounds in the NE Atlantic during the Late Pleistocene and Holocene.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Changes in Atlantic deep water circulation were reconstructed by comparing the benthic foraminiferal delta13C record at ODP Site 1090 in the South Atlantic with similar records from the North Atlantic (Sites 982, 607, 925, 929) and deep Pacific (Site 849) oceans. Important deep water circulation changes occurred in the early Pleistocene at 1.55 Myr and during the Mid-Pleistocene Transition at 0.9 Myr. At 1.55 Myr, glacial delta13C values in the Southern Ocean became significantly lower than those in the deep Pacific, establishing a pattern that persisted throughout the late Pleistocene. We propose that the lowering of delta13C values of Southern Component Water (SCW) at this time resulted from expansion of sea ice and reduced ventilation of deep water during glacial periods after marine isotope stage 52. Accompanying this change in Southern Ocean deep water circulation was enhanced interhemispheric coupling between the North and South Atlantic after 1.55 Myr. At ~0.9 Myr, the magnitude of glacial-to-interglacial variabilityin delta13C increased and shifted to a longer frequency (100 kyr) along with oceanic delta18O (ice volume). Calculation of percent Northern Component Water (NCW) using Site 1090 as the SCW end member yielded 20-30% less reduction of NCW during glacial periods of the late Pleistocene. Also, a trend toward reduced glacial suppression of NCW during the past 400 kyr is not evident. The apparent decoupling of ice volume and deep water circulation reported previously maybe an artifact of using a Pacific, rather than a Southern Ocean, carbon isotopic record to calculate past mixing ratios of NCW and SCW.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The delta13C and Cd measurements from benthic foraminifera from Biogeochemical Ocean Flux Study (BOFS) northeast Atlantic Ocean sediment cores are presented. The delta13C values in glacial foraminifera are consistent with those from elsewhere in the North Atlantic Ocean. For intermediate water (1000 - 2000 m water depth), delta13C values were higher at the last glacial maximum than in present North Atlantic Deep Water (NADW), whereas for deep water (>2000 m) they were lower during the glacial maximum. The Cd concentrations of glacial northeast Atlantic intermediate water were lower than those of present NADW. However, deepwater Cd concentrations increased to values between NADW and present Pacific Deep Water (PDW). The delta13C and Cd data are consistent and show that the northeast Atlantic Ocean was strongly stratified with 13C enriched, low Cd intermediate water overlying 13C depleted, high Cd deep water. The glacial water column comprised two different water masses: deep water, similar in character to present Antarctic Bottom Water (AABW), and intermediate water, different in character from both AABW and NADW, and any present intermediate-depth North Atlantic water. The characteristics of glacial intermediate water were, however, similar to present near-surface waters in the North Atlantic, which suggests rapid ventilation of the glacial ocean to depths of up to 2000 m by cold, nutrient-depleted young surface waters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Large-amplitude millennial-scale climate oscillations have been identified in late Pleistocene climate archives from around the world. These oscillations appear to be of larger amplitude during times of enlarged ice sheets. This observation suggests the existence of a relationship between large-amplitude millennial variations in climate and extreme glacial conditions and therefore that the emergence of millennial-scale climate variability may be linked to the Pliocene intensification of northern hemisphere glaciation (iNHG). Here we test this hypothesis using new late Pliocene high-resolution (ab. 400 year) records of ice-rafted debris deposition and stable isotopes in planktic foraminiferal calcite (Globigerinoides ruber) generated from Integrated Ocean Drilling Program Site U1313 in the subpolar North Atlantic (a reoccupation of the classic Deep Sea Drilling Project Site 607). Our records span marine oxygen isotope stages (MIS) 103-95 (ab. 2600 to 2400 ka), the first interval during iNHG (ab. 3.5 to 2.5 Ma) in which large-amplitude glacial-interglacial cycles and inferred sea level changes occur. Our records reveal small-amplitude variability at periodicities of ab. 1.8 to 6.2 kyr that prevails regardless of (inter)glacial state with no significant amplification during the glacials MIS 100, 98, and 96. These findings imply that the threshold for the amplification of such variability to the proportions seen in the marine archive of the last glacial was not crossed during the late Pliocene and, in view of all available data, likely not until the Mid-Pleistocene Transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The late Paleocene thermal maximum (LPTM) was a dramatic, short-term global warming event that occurred ~55 Ma. Warming of high-latitude surface waters and global deep waters during the LPTM has been well documented; however, current data suggest that subtropical and tropical sea surface temperatures (SSTs) did not change during the event. Conventional paradigms of global climate change, such as CO2-induced greenhouse warming, predict greater warming in the high latitudes than in the tropics or subtropics but, nonetheless, cannot account for the stable tropical/subtropical SSTs. We measured the stable isotope values of well-preserved late Paleocene to early Eocene planktonic foraminifera from South Atlantic Deep Sea Drilling Project (DSDP) Site 527 to evaluate the subtropical response to the climatic and environmental changes of the LPTM. Planktonic foraminiferal d18O values at Site 527 decrease by ~0.94 per mil from pre-LPTM to excursion values, providing the first evidence for subtropical warming during the LPTM. We estimate that subtropical South Atlantic SSTs warmed by at least ~1°-4°C, on the basis of possible changes in evaporation and precipitation. The new evidence for subtropical SST warming supports a greenhouse mechanism for global warming involving elevated atmospheric CO2 levels.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120-220 kyr) of the PETM reflects the rapid enhancement of negative feedback mechanisms within Earth's exogenic carbon cycle that served the dual function of buffering ocean pH and reducing atmospheric greenhouse gas levels. Detailed study of the PETM stratigraphy from Ocean Drilling Program Site 690 (Weddell Sea) reveals that the CIE recovery period, which postdates the CIE onset by ~80 kyr, is represented by an expanded (~2.5 m thick) interval containing a unique planktic foraminiferal assemblage strongly diluted by coccolithophore carbonate. Collectively, the micropaleontological and sedimentological changes preserved within the CIE recovery interval reflect a transient state when ocean-atmosphere chemistry fostered prolific coccolithophore blooms that suppressed the local lysocline to relatively deeper depths. A prominent peak in the abundance of the clay mineral kaolinite is associated with the CIE recovery interval, indicating that continental weathering/runoff intensified at this time as well (Robert and Kennett, 1994). Such parallel stratigraphic changes are generally consonant with the hypothesis that enhanced continental weathering/runoff and carbonate precipitation helped sequester carbon during the PETM recovery period (e.g., Dickens et al., 1997, doi:10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2 ; Zachos et al., 2005, doi:10.1126/science.1109004).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxygen isotope records of G. sacculifer and Pulleniatina in the uppermost three cores at Ocean Drilling Program Hole 805C span the last 1.6 m.y., an estimate based on Fourier stratigraphy. The last 700,000 yr are dominated by both eccentricity and obliquity-related orbital fluctuations. The range of variation of delta18O values is about 1.5?, of which ca. 75% may be assigned to global ice-volume effect. The remainder of the range is shared by the effects of surface temperature variation, thermocline depth change (in the case of Pulleniatina, especially), and differential dissolution. Before 1 Ma, obliquity-related fluctuations dominate. The transition between obliquity- and eccentricity-dominated time occurs between ca. 1 and 0.7 Ma. It is marked by irregularities in phase relationships, the source of which is not clear. The age of the Brunhes/Matuyama boundary is determined as 794,000 yr by obliquity counting. However, an age of 830,000 yr also is compatible with the counts of both eccentricity and obliquity cycles. In the first case, Stage 19 (which contains the boundary) is coincident with the crest of the 19th obliquity cycle, setting the first crest downcore equal to zero, and counting backward (o19). In the second, Stage 19 coincides with o20. No evidence was found for fluctuations related to precession (23 and 19 k.y.) rising above the noise level, using plain Fourier expansion on the age model of the entire series. Detailed stratigraphic comparison with the Quaternary record of Hole 806B allows the recognition of major dissolution events (which increase the difference in delta18O values of G. sacculifer at the two sites). These occur at Stages 11-13, 16-17, and near 1.5 Ma (below o33).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Present-day low-latitude eastern and western Atlantic basins are geochemically distinct below the sill depth of the Mid-Atlantic Ridge. While Antarctic Bottom Water (AABW) circulates freely in the western Atlantic, flow into the eastern Atlantic is restricted below 4 km which results in filling the abyssal depths of this basin with water of geochemical similarity to nutrient depleted North Atlantic Deep Water. Using carbon isotopes and Cd/Ca ratios in benthic foraminifera we reconstruct the geochemistry of these basins during the last glacial maximum. Results indicate that deep eastern and western Atlantic basins became geochemically identical during the last glacial. This was achieved by shoaling of the upper surface of AABW above the sill depth of the Mid-Atlantic Ridge, which allowed bottom waters in both basins to be filled with the same water mass. Although AABW became the dominant water mass in the deep eastern Atlantic basin during the glacial, Holocene-glacial delta13C-PO4 shifts in this basin are in Redfield proportions, unlike the disproportionate Holocene-glacial delta13C-PO4 shifts observed in the Southern Ocean. By examining the composition of deep and intermediate waters throughout the Atlantic, we show that this effect was induced by a change in gradient of the delta13C-PO4 deepwater mixing line during glacial times. Evidence from high-latitude planktonic data suggests that the change in gradient of the deepwater mixing line was brought about through a significant reduction in the thermodynamic effect on Southern Ocean surface waters. By using coupled delta13C-PO4 data to constrain the composition of end member water masses in the glacial Atlantic, we conclude that deep waters in the low-latitude glacial Atlantic were composed of a mixture of northern and southern source waters in a ratio of 1:3.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stable isotopic data obtained from planktonic and benthic foraminifers were used to study paleoceanographic changes along the northeastern Australian margin from late Miocene (10 Ma) to Holocene time, and to evaluate the influence of these changes on reef growth. The data indicate that variations in surface-water temperatures may have had an important effect on the reef complexes on the Queensland Plateau and possibly off the northeastern Australian margin. Three sites were studied: Leg 21, Site 209 on the eastern edge of the Queensland Plateau, and Leg 133, Site 811 on the western margin, and Site 817 on the lower southern slope of the plateau. Shallow-water bioclasts recovered from Holes 811A and 817A indicate extensive reef growth on the Queensland Plateau during the middle Miocene (before 12 Ma), signifying surface-water temperatures of 20°C or greater. The amount of reefal detritus produced during the late Miocene (10.0-5.2 Ma) decreased progressively, resulting in a reduction in area of the reef complexes. The isotopic data from planktonic foraminifers in these late Miocene age sediments indicate the presence of relatively cool surface waters (16°-19°C), which may have been a major factor contributing to the demise of the reefs on the Queensland Plateau. Surface waters remained cool until the middle Pleistocene (1.2-0.5 Ma), when the surface-water temperature apparently increased to approximately 25°C, recorded both in the isotopic data and by renewed reef growth. This increase occurred simultaneously (within the error of the age model) with the initiation of the Great Barrier Reef. We propose that cooling of surface waters during the early late Miocene contributed to reef decline on the Queensland Plateau, and that subsequent warming of surface waters during the middle Pleistocene promoted the initiation of reef growth on the northeastern Australian margin. Reef development on the Queensland Plateau never recovered to the middle Miocene extent because of a combination of tectonic (accelerated subsidence of the plateau) and paleoceanographic (the cooler surface waters present from the late Miocene throughout the Pliocene) factors. Variations in seafloor d18O appear to be controlled by regional factors, as indicated by the similarity of data from Sites 811 and 817 to those from Site 590 on Lord Howe Rise.