709 resultados para Childhood Overweight
Resumo:
Background: It seems plausible that children with atopy and persistent asthma symptoms will, like their adult counterparts, have chronic airways inflammation. However, many young children with no other atopic features have episodic wheezing that is triggered solely by viral respiratory infections. Little is known as to whether airways inflammation occurs in these two asthma patterns during relatively asymptomatic periods.
Methods: Using a non-bronchoscopic bronchoalveolar lavage (BAL) procedure on children presenting for an elective surgical procedure, this study has investigated the cellular constituents of BAL fluid in children with a history of atopic asthma (AA) non-asthmatic atopic children (NAA) or viral associated wheeze (VAW).
Results: A total of 95 children was studied: 52 with atopic asthma (8.0 years, range 1.1-15.3, 36 male), 23 with non-asthmatic atopy (median age 8.3 years, range 1.7-13.6, 11 male) and 20 with VAW (3.1 years, range 1.0-8.2, 13 male). No complications were observed during the lavage procedure and no adverse events were noted post-operatively. Total lavage fluid recovered was similar in all groups and the total cell numbers were higher in the VAW group. Eosinophil (P< 0.005) and mast cell (/'<0.05) numbers were significantly elevated in the group with atopic asthma.
Conclusions: During relatively asymptomatic periods there is on-going airways inflammation, as demonstrated by eosinophil and mast cell recruitment, in children with asthma and atopy but not in children with viral associated wheeze or atopy alone. This strongly suggests that there are different underlying pathophysiologicai mechanisms in these two groups of children who wheeze.
Resumo:
Aims/hypothesis: We investigated whether children who are heavier at birth have an increased risk of type 1 diabetes. Methods: Relevant studies published before February 2009 were identified from literature searches using MEDLINE, Web of Science and EMBASE. Authors of all studies containing relevant data were contacted and asked to provide individual patient data or conduct pre-specified analyses. Risk estimates of type 1 diabetes by category of birthweight were calculated for each study, before and after adjustment for potential confounders. Meta-analysis techniques were then used to derive combined ORs and investigate heterogeneity between studies. Results: Data were available for 29 predominantly European studies (five cohort, 24 case-control studies), including 12,807 cases of type 1 diabetes. Overall, studies consistently demonstrated that children with birthweight from 3.5 to 4 kg had an increased risk of diabetes of 6% (OR 1.06 [95% CI 1.01-1.11]; p=0.02) and children with birthweight over 4 kg had an increased risk of 10% (OR 1.10 [95% CI 1.04-1.19]; p=0.003), compared with children weighing 3.0 to 3.5 kg at birth. This corresponded to a linear increase in diabetes risk of 3% per 500 g increase in birthweight (OR 1.03 [95% CI 1.00-1.06]; p=0.03). Adjustments for potential confounders such as gestational age, maternal age, birth order, Caesarean section, breastfeeding and maternal diabetes had little effect on these findings. Conclusions/interpretation: Children who are heavier at birth have a significant and consistent, but relatively small increase in risk of type 1 diabetes. © 2010 Springer-Verlag.
--------------------------------------------------------------------------------
Reaxys Database Information|
--------------------------------------------------------------------------------
Resumo:
Aims/hypothesis: The aim of this study was to investigate the evidence of an increased risk of childhood-onset type 1 diabetes in children born by Caesarean section by systematically reviewing the published literature and performing a meta-analysis with adjustment for recognised confounders.
Methods: After MEDLINE, Web of Science and EMBASE searches, crude ORs and 95% CIs for type 1 diabetes in children born by Caesarean section were calculated from the data reported in each study. Authors were contacted to facilitate adjustments for potential confounders, either by supplying raw data or calculating adjusted estimates. Meta-analysis techniques were then used to derive combined ORs and to investigate heterogeneity between studies.
Results: Twenty studies were identified. Overall, there was a significant increase in the risk of type 1 diabetes in children born by Caesarean section (OR 1.23, 95% CI 1.15-1.32, p<0.001). There was little evidence of heterogeneity between studies (p=0.54). Seventeen authors provided raw data or adjusted estimates to facilitate adjustments for potential confounders. In these studies, there was evidence of an increase in diabetes risk with greater birthweight, shorter gestation and greater maternal age. The increased risk of type 1 diabetes after Caesarean section was little altered after adjustment for gestational age, birth weight, maternal age, birth order, breast-feeding and maternal diabetes (adjusted OR 1.19, 95% CI 1.04-1.36, p=0.01).
Conclusions/interpretation: This analysis demonstrates a 20% increase in the risk of childhood-onset type 1 diabetes after Caesarean section delivery that cannot be explained by known confounders.
Resumo:
Background: The incidence of type 1 diabetes in children younger than 15 years is increasing. Prediction of future incidence of this disease will enable adequate fund allocation for delivery of care to be planned. We aimed to establish 15-year incidence trends for childhood type 1 diabetes in European centres, and thereby predict the future burden of childhood diabetes in Europe.
Methods: 20 population-based EURODIAB registers in 17 countries registered 29 311 new cases of type 1 diabetes, diagnosed in children before their 15th birthday during a 15-year period, 1989–2003. Age-specific log linear rates of increase were estimated in five geographical regions, and used in conjunction with published incidence rates and population projections to predict numbers of new cases throughout Europe in 2005, 2010, 2015, and 2020.
Findings: Ascertainment was better than 90% in most registers. All but two registers showed significant yearly increases in incidence, ranging from 0·6% to 9·3%. The overall annual increase was 3·9% (95% CI 3·6–4·2), and the increases in the age groups 0–4 years, 5–9 years, and 10–14 years were 5·4% (4·8–6·1), 4·3% (3·8–4·8), and 2·9% (2·5–3·3), respectively. The number of new cases in Europe in 2005, is estimated as 15 000, divided between the 0–4 year, 5–9 year, and 10–14 year age-groups in the ratio 24%, 35%, and 41%, respectively. In 2020, the predicted number of new cases is 24 000, with a doubling in numbers in children younger than 5 years and a more even distribution across age-groups than at present (29%, 37%, and 34%, respectively). Prevalence under age 15 years is predicted to rise from 94 000 in 2005, to 160 000 in 2020.
Interpretation: If present trends continue, doubling of new cases of type 1 diabetes in European children younger than 5 years is predicted between 2005 and 2020, and prevalent cases younger than 15 years will rise by 70%. Adequate health-care resources to meet these children’s needs should be made available.
Resumo:
Background: The marked increases in the incidence of type 1 diabetes in recent decades strongly suggest the role of environmental influences. These environmental influences remain largely unknown.
Resumo:
Aims To determine whether children with infections in early life (recorded routinely in general practice) have a reduced risk of Type 1 diabetes, as would be expected from the hygiene hypothesis.
Resumo:
Type 1 diabetes is the most common form of diabetes in most part of the world, although reliable data are still unavailable in several countries. Wide variations exist between the incidence rates of different populations, incidence is lowest in China and Venezuela (0.1 per 100 000 per year) and highest in Finland and Sardinia (37 per 100 000 per year). In most populations girls and boys are equally affected. In general, the incidence increases with age, the incidence peak is at puberty. After the pubertal years, the incidence rate significantly drops in young women, but remains relatively high in young adult males up to the age 29-35 years. Prospective national and large international registries (DIAMOND and EURODIAB) demonstrated an increasing trend in incidence in most regions of the world over the last few decades and increases seem to be the highest in the youngest age group. Analytical epidemiological studies have identified environmental risk factors operating early in life which might have contributed to the increasing trend in incidence. These include enteroviral infections in pregnant women, older maternal age (39-42 years), preeclampsia, cesarean section delivery, increased birthweight, early introduction of cow's milk proteins and an increased rate of postnatal growth (weight and height). Optimal vitamin D supplementation during early life has been shown to be protective. Some of these environmental risk factors such as viruses may initiate autoimmunity toward the beta cell, other exposures may put on overload on the already affected beta cell and thus accelerate the disease process.
Resumo:
Aims To investigate secular trends in the incidence of Type 1 diabetes in Northern Ireland over the period 1989-2003. To highlight geographical variations in the incidence of Type 1 diabetes by producing disease maps and to compare incidence rates by relevant area characteristics.
Resumo:
Background To study the epidemiology of childhood-onset type 1 insulin-dependent diabetes in Europe, the EURODIAB collaborative group established in 1988 prospective geographically-defined registers of new cases diagnosed under 15 years of age. This report is based on 16 362 cases registered during the period 1989-94 by 44 centres representing most European countries and Israel and covering a population of about 28 million children.