996 resultados para Chagas-Disease
Resumo:
The hallmark of chronic Chagas' disease cardiomyopathy (CCC) is the finding of a T cell-rich inflammatory mononuclear cell infiltrate in the presence of extremely few parasites in the heart lesions. The scarcity of parasites in affected heart tissue casts doubt on the direct participation of Trypanosoma cruzi in CCC heart tissue lesions, and suggests the possible involvement of autoimmunity. The cells in the infiltrate are presumably the ultimate effectors of tissue damage, and there is evidence that such cells recognize cardiac myosin in molecular mimicry with T. cruzi proteins rather than primary reactivity to T. cruzi antigens (Cunha-Neto et al. (1996) Journal of Clinical Investigation, 98: 1709-1712). Recently, we have studied heart-infiltrating T cells at the functional level. In this short review we summarize the studies about the role of cytokines in human and experimental T. cruzi infection, along with our data on heart-infiltrating T cells in human Chagas' cardiomyopathy. The bulk of evidence points to a significant production of IFN-g and TNF-a which may be linked to T. cruzi-induced IL-12 production
Resumo:
Manometric and pharmacological tests have shown that motor abnormalities may occur in the non-dilated colons of chagasic patients. In order to investigate the presence of abnormalities of colonic function in constipated patients with Chagas disease (ChC) without megaesophagus or megacolon, studies of total and segmental colonic transit time with radiopaque markers were performed on 15 ChC patients, 27 healthy volunteers and 17 patients with idiopathic constipation (IC). The values obtained for the control group were similar to those reported in the literature (total colonic time: 34.1 ± 15.6 h; right colon: 9.9 ± 7.3 h; left colon: 10.8 ± 10 h, and rectosigmoid: 12.6 ± 9.9 h). Colonic transit time data permitted us to divide both IC and ChC patients into groups with normal transit and those with slow colonic transit. Colonic inertia was detected in 41% of IC patients and in 13% of ChC patients; left colon isolated stasis (hindgut dysfunction) was detected in 12% of IC patients and 7% of ChC patients, and outlet obstruction was detected in 6% of IC patients and 7% of ChC patients. There were no significant differences in total or segmental colonic transit times between slow transit IC and slow transit ChC patients. In conclusion, an impairment of colonic motility was detected in about 30% of constipated patients with Chagas disease without megaesophagus or megacolon. This subgroup of patients presented no distinctive clinical feature or pattern of colonic dysmotility when compared to patients with slow transit idiopathic constipation.
Resumo:
The most important component of the upper esophageal sphincter (UES) is the cricopharyngeal muscle. During the measurement of sphincter pressure the catheter passed through the sphincter affects the pressure value. In Chagas' disease and primary achalasia there is an esophageal myenteric plexus denervation which may affect UES pressure. We measured the UES pressure of 115 patients with Chagas' disease, 28 patients with primary achalasia and 40 healthy volunteers. We used a round manometric catheter with continuous perfusion and the rapid pull-through method, performed in triplicate during apnea. Pressures were measured in four directions, and the direction with the highest pressure (anterior/posterior) and the average of the four directions were measured. The highest UES pressure in Chagas' disease patients without abnormalities upon radiologic esophageal examination (N = 63) was higher than in normal volunteers (142.8 ± 47.4 mmHg vs 113.0 ± 46.0 mmHg, mean ± SD, P<0.05). There was no difference in UES pressure between patients with primary achalasia and patients with Chagas' disease and similar esophageal involvement and normal volunteers (P>0.05). There was no difference between patients with or without esophageal dilation. In the group of subjects less than 50 years of age the UES pressure of primary achalasia (N = 21) was lower than that of Chagas' disease patients with normal radiologic esophageal examination (N = 41), measured at the site with the highest pressure (109.3 ± 31.5 mmHg vs 149.6 ± 45.3 mmHg, P<0.01) and as the average of the four directions (64.2 ± 17.1 mmHg vs 83.5 ± 28.6 mmHg, P<0.05). We conclude that there is no difference in UES pressure between patients with Chagas' disease, primary achalasia and normal volunteers, except for patients with minor involvement by Chagas' disease, for whom the UES pressure at the site with the highest pressure was higher than the pressure of normal volunteers and patients with primary achalasia.
Resumo:
Chagas' disease causes degeneration and reduction of the number of intrinsic neurons of the esophageal myenteric plexus, with consequent absent or partial lower esophageal sphincter relaxation and loss of peristalsis in the esophageal body. The impairment of esophageal motility is seen mainly in the distal smooth muscle region. There is no study about esophageal striated muscle contractions in the disease. In 81 patients with heartburn (44 with esophagitis) taken as controls, 51 patients with Chagas' disease (21 with esophageal dilatation) and 18 patients with idiopathic achalasia (11 with esophageal dilatation) we studied the amplitude, duration and area under the curve of esophageal proximal contractions. Using the manometric method and a continuous perfusion system we measured the esophageal striated muscle contractions 2 to 3 cm below the upper esophageal sphincter after swallows of a 5-ml bolus of water. There was no significant difference in striated muscle contractions between patients with heartburn and esophagitis and patients with heartburn without esophagitis. There was also no significant difference between patients with heartburn younger or older than 50 years or between men and women or in esophageal striated muscle contractions between patients with heartburn and Chagas' disease. The esophageal proximal amplitude of contractions was lower in patients with idiopathic achalasia than in patients with heartburn. In patients with Chagas' disease there was no significant difference between patients with esophageal dilatation and patients with normal esophageal diameter. Esophageal striated muscle contractions in patients with Chagas' disease have the same amplitude and duration as seen in patients with heartburn. Patients with idiopathic achalasia have a lower amplitude of contraction than patients with heartburn.
Resumo:
Recent data from our laboratory have shown that patients with the indeterminate form of Chagas' disease can have impairment of left ventricular contractility, as evaluated by the slope of the left ventricle end-systolic pressure-dimension relationship. We also showed that Chagas' disease patients with minimal baseline wall motion abnormalities detected by two-dimensional echocardiography have more intense contractility impairment when compared to patients with the indeterminate form of the disease without this abnormality. The prognostic implications of these findings have not been established. We evaluated 59 patients (37-76 years, mean = 55 years) with different clinical forms of Chagas' disease, who had normal left ventricular global systolic function at baseline (57.6 ± 6.9%) and who had at least one additional echo during clinical follow-up (0.4-17.6; mean 4.6 years). Group 1 consisted of 14 patients with minor baseline left ventricle wall motion abnormalities and group 2 consisted of 45 patients without these abnormalities. During follow-up, global left ventricle systolic function deterioration was observed in 10 group 1 patients (71.4%) and in only 10 group 2 patients (22.2%; P < 0.005). Age and duration of follow-up were not independent determinants of left ventricular function deterioration in these patients. The present data indicate that mild segmental left ventricular wall motion abnormalities are associated with worsening of systolic function in Chagas' disease patients who have normal baseline global systolic performance.
Resumo:
The objective of the present study was to investigate clinical, echocardiographic and electrocardiographic (12-lead resting ECG, 24-h ambulatory ECG monitoring and signal-averaged ECG (SAECG)) parameters in subjects with chronic Chagas' disease in a long-term follow-up as prognostic markers for adverse outcomes. Fifty adult outpatients (34 to 74 years old, 31 females) staged according to Los Andes class I, II or III and complaining of palpitation were enrolled in a longitudinal study. SAECG was analyzed in time and frequency domains and the endpoint was a composite of cardiac death and ventricular tachycardia. During a follow-up of 84.2 ± 39.0 months, 34.0% of the patients developed adverse outcomes (9 cardiac deaths and 11 episodes of ventricular tachycardia). After optimal dichotomization, in a stepwise multivariate Cox-hazard regression model, apical aneurysm (HR = 3.7; 95% CI = 1.2-1.3; P = 0.02), left ventricular ejection fraction <62% (HR = 4.60; 95% CI = 1.39-15.24; P = 0.01) and incidence of ventricular premature contractions >614 per 24 h (hazard ratio = 6.1; 95% CI = 1.7-22.6; P = 0.006) were independent predictors of the composite endpoint. Although a high frequency content in SAECG demonstrated association with the presence of left ventricular dysfunction and myocardial fibrosis, its predictive value for the composite endpoint was not significant. Apical aneurysms, reduced left ventricular function and a high incidence of ventricular ectopic beats over a 24-h period have a strong predictive value for a composite endpoint of cardiac death and ventricular tachycardia in subjects with chronic Chagas' disease.
Resumo:
Leptin is produced primarily by adipocytes. Although originally associated with the central regulation of satiety and energy metabolism, increasing evidence indicates that leptin may be an important mediator in cardiovascular pathophysiology. The aim of the present study was to investigate plasma leptin levels in patient with Chagas' heart disease and their relation to different forms of the disease. We studied 52 chagasic patients and 30 controls matched for age and body mass index. All subjects underwent anthropometric, leptin and N-terminal pro-brain natriuretic peptide (NT-proBNP) measurements and were evaluated by echocardiography, 12-lead electrocardiogram (ECG), and chest X-ray. All patients had fasting blood samples taken between 8:00 and 9:00 am. Chagasic patients were divided into 3 groups: group I (indeterminate form, IF group) consisted of 24 subjects with 2 positive serologic reactions for Chagas' disease and no cardiac involvement as evaluated by chest X-rays, ECG and two-dimensional echocardiography; group II (showing ECG abnormalities and normal left ventricular systolic function, ECG group) consisted of 14 patients; group III consisted of 14 patients with congestive heart failure (CHF group) and left ventricular dysfunction. Serum leptin levels were significantly lower (P < 0.001) in the CHF group (1.4 ± 0.8 ng/mL) when compared to the IF group (5.3 ± 5.3 ng/mL), ECG group (9.7 ± 10.7 ng/mL), and control group (8.1 ± 7.8 ng/mL). NT-proBNP levels were significantly higher (P < 0.001) in the CHF group (831.8 ± 800.1 pg/mL) when compared to the IF group (53.2 ± 33.3 pg/mL), ECG group (83.3 ± 57.4 pg/mL), and control group (32 ± 22.7 pg/mL). Patients with Chagas' disease and an advanced stage of CHF have high levels of NT-ProBNP andlow plasma levels of leptin. One or more leptin-suppressing mechanisms may operate in chagasic patients.
Resumo:
Intense immune responses are observed during human or experimental infection with the digenetic protozoan parasite Trypanosoma cruzi. The reasons why such immune responses are unable to completely eliminate the parasites are unknown. The survival of the parasite leads to a parasite-host equilibrium found during the chronic phase of chagasic infection in most individuals. Parasite persistence is recognized as the most likely cause of the chagasic chronic pathologies. Therefore, a key question in Chagas' disease is to understand how this equilibrium is established and maintained for a long period. Understanding the basis for this equilibrium may lead to new approaches to interventions that could help millions of individuals at risk for infection or who are already infected with T. cruzi. Here, we propose that the phenomenon of immunodominance may be significant in terms of regulating the host-parasite equilibrium observed in Chagas' disease. T. cruzi infection restricts the repertoire of specific T cells generating, in some cases, an intense immunodominant phenotype and in others causing a dramatic interference in the response to distinct epitopes. This immune response is sufficiently strong to maintain the host alive during the acute phase carrying them to the chronic phase where transmission usually occurs. At the same time, immunodominance interferes with the development of a higher and broader immune response that could be able to completely eliminate the parasite. Based on this, we discuss how we can interfere with or take advantage of immunodominance in order to provide an immunotherapeutic alternative for chagasic individuals.
Resumo:
Atrial fibrillation (AF) affects subjects with Chagas' disease and is an indicator of poor prognosis. We investigated clinical, echocardiographic and electrocardiographic variables of Chagas' disease in a long-term longitudinal study as predictors of a new-onset AF episode lasting >24 h, nonfatal embolic stroke and cardiac death. Fifty adult outpatients (34 to 74 years old, 62% females) staged according to the Los Andes classification were enrolled. During a follow-up of (mean ± SD) 84.2 ± 39.0 months, 9 subjects developed AF (incidence: 3.3 ± 1.0%/year), 5 had nonfatal stroke (incidence: 1.3 ± 1.0%/year), and nine died (mortality rate: 2.3 ± 0.8%/year). The progression rate of left ventricular mass and left ventricular ejection fraction was significantly greater in subjects who experienced AF (16.4 ± 20.0 g/year and -8.6 ± 7.6%/year, respectively) than in those who did not (8.2 ± 8.4 g/year; P = 0.03, and -3.0 ± 2.5%/year; P = 0.04, respectively). In univariate analysis, left atrial diameter ≥3.2 cm (P = 0.002), pulmonary arterial hypertension (P = 0.035), frequent premature supraventricular and ventricular contraction counts/24 h (P = 0.005 and P = 0.007, respectively), ventricular couplets/24 h (P = 0.002), and ventricular tachycardia (P = 0.004) were long-term predictors of AF. P-wave signal-averaged ECG revealed a limited long-term predictive value for AF. In chronic Chagas' disease, large left atrial diameter, pulmonary arterial hypertension, frequent supraventricular and ventricular premature beats, and ventricular tachycardia are long-term predictors of AF. The rate of left ventricular mass enlargement and systolic function deterioration impact AF incidence in this population.
Resumo:
Hypnophilin and panepoxydone, terpenoids isolated from Lentinus strigosus, have significant inhibitory activity onTrypanosoma cruzi trypanothione reductase (TR). Although they have similar TR inhibitory activity at 10 μg/mL (40.3 μM and 47.6 μM for hypnophilin and panepoxydone, respectively; ~100%), hypnophilin has a slightly greater inhibitory activity (~71%) on T. cruzi amastigote (AMA) growth in vitro as well as on in vitro phytohemagglutinin (PHA)-induced peripheral blood mononuclear (PBMC) proliferation (~70%) compared to panepoxydone (69% AMA inhibition and 91% PBMC inhibition). Hypnophilin and panepoxydone at 1.25 μg/mL had 67% inhibitory activity onLeishmania (Leishmania) amazonensis amastigote-like (AMA-like) growth in vitro. The panepoxydone activity was accompanied by a significant inhibitory effect on PHA-induced PBMC proliferation, suggesting a cytotoxic action. Moreover, incubation of human PBMC with panepoxydone reduced the percentage of CD16+ and CD14+ cells and down-regulated CD19+, CD4+ and CD8+ cells, while hypnophilin did not alter any of the phenotypes analyzed. These data indicate that hypnophilin may be considered to be a prototype for the design of drugs for the chemotherapy of diseases caused by Trypanosomatidae.
Resumo:
Infection with the protozoan parasite Trypanosoma cruzi leads to Chagas disease, which affects millions of people in Latin America. Infection with T. cruzi cannot be eliminated by the immune system. A better understanding of immune evasion mechanisms is required in order to develop more effective vaccines. During the acute phase, parasites replicate extensively and release immunomodulatory molecules that delay parasite-specific responses mediated by T cells. This immune evasion allows the parasite to spread in the host. In the chronic phase, parasite evasion relies on its replication strategy of hijacking the TGF-β signaling pathway involved in inflammation and tissue regeneration. In this article, the mechanisms of immune evasion described for T. cruzi are reviewed.
Resumo:
The SEARCH-RIO study prospectively investigated electrocardiogram (ECG)-derived variables in chronic Chagas disease (CCD) as predictors of cardiac death and new onset ventricular tachycardia (VT). Cardiac arrhythmia is a major cause of death in CCD, and electrical markers may play a significant role in risk stratification. One hundred clinically stable outpatients with CCD were enrolled in this study. They initially underwent a 12-lead resting ECG, signal-averaged ECG, and 24-h ambulatory ECG. Abnormal Q-waves, filtered QRS duration, intraventricular electrical transients (IVET), 24-h standard deviation of normal RR intervals (SDNN), and VT were assessed. Echocardiograms assessed left ventricular ejection fraction. Predictors of cardiac death and new onset VT were identified in a Cox proportional hazard model. During a mean follow-up of 95.3 months, 36 patients had adverse events: 22 new onset VT (mean±SD, 18.4±4‰/year) and 20 deaths (26.4±1.8‰/year). In multivariate analysis, only Q-wave (hazard ratio, HR=6.7; P<0.001), VT (HR=5.3; P<0.001), SDNN<100 ms (HR=4.0; P=0.006), and IVET+ (HR=3.0; P=0.04) were independent predictors of the composite endpoint of cardiac death and new onset VT. A prognostic score was developed by weighting points proportional to beta coefficients and summing-up: Q-wave=2; VT=2; SDNN<100 ms=1; IVET+=1. Receiver operating characteristic curve analysis optimized the cutoff value at >1. In 10,000 bootstraps, the C-statistic of this novel score was non-inferior to a previously validated (Rassi) score (0.89±0.03 and 0.80±0.05, respectively; test for non-inferiority: P<0.001). In CCD, surface ECG-derived variables are predictors of cardiac death and new onset VT.
Resumo:
Objectives. To study mortality trends related to Chagas disease taking into account all mentions of this cause listed on any line or part of the death certificate. Methods. Mortality data for 1985-2006 were obtained from the multiple cause-of-death database maintained by the Sao Paulo State Data Analysis System (SEADE). Chagas disease was classified as the underlying cause-of-death or as an associated cause-of-death (non-underlying). The total number of times Chagas disease was mentioned on the death certificates was also considered. Results. During this 22-year period, there were 40 002 deaths related to Chagas disease: 34 917 (87.29%) classified as the underlying cause-of-death and 5 085 (12.71%) as an associated cause-of-death. The results show a 56.07% decline in the death rate due to Chagas disease as the underlying cause and a stabilized rate as associated cause. The number of deaths was 44.5% higher among men. The fact that 83.5% of the deaths occurred after 45 years of age reflects a cohort effect. The main causes associated with Chagas disease as the underlying cause-of-death were direct complications due to cardiac involvement, such as conduction disorders, arrhythmias and heart failure. Ischemic heart disease, cerebrovascular disorders and neoplasms were the main underlying causes when Chagas was an associated cause-of-death. Conclusions. For the total mentions to Chagas disease, a 51.34% decline in the death rate was observed, whereas the decline in the number of deaths was only 5.91%, being lower among women and showing a shift of deaths to older age brackets. Using the multiple cause-of-death method contributed to the understanding of the natural history of Chagas disease.