974 resultados para Cardiac function


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:Chemotherapy with anthracyclines and trastuzumab can cause cardiotoxicity. Alteration of cardiac adrenergic function assessed by metaiodobenzylguanidine labeled with iodine-123 (123I-mIBG) seems to precede the drop in left ventricular ejection fraction.Objective:To evaluate and to compare the presence of cardiovascular abnormalities among patients with breast cancer undergoing chemotherapy with anthracyclines and trastuzumab, and only with anthracycline.Methods:Patients with breast cancer were analyzed clinical, laboratory, electrocardiographic and echocardiographic and cardiac sympathetic activity. In scintigraphic images, the ratio of 123I-mIBG uptake between the heart and mediastinum, and the washout rate were calculated. The variables were compared between patients who received anthracyclines and trastuzumab (Group 1) and only anthracyclines (Group 2).Results:Twenty patients, with mean age 57 ± 14 years, were studied. The mean left ventricular ejection fraction by echocardiography was 67.8 ± 4.0%. Mean washout rate was 28.39 ± 9.23% and the ratio of 123I-mIBG uptake between the heart and mediastinum was 2.07 ± 0.28. Of the patients, 82% showed an increased in washout rate, and the ratio of 123I-mIBG uptake between the heart and mediastinum decreased in 25%. Concerning the groups, the mean washout rate of Group 1 was 32.68 ± 9.30% and of Group 2 was 24.56 ± 7.72% (p = 0,06). The ratio of 123I-mIBG uptake between the heart and mediastinum was normal in all patients in Group 2, however, the Group 1, showed 50% the ratio of 123I-mIBG uptake between the heart and mediastinum ≤ 1.8 (p = 0.02).Conclusion:In women with breast cancer undergoing chemotherapy, assessment of cardiac sympathetic activity with 123I-mIBG appears to be an early marker of cardiotoxicity. The combination of chemotherapy showed higher risk of cardiac adrenergic hyperactivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The assessment of left atrial (LA) function is used in various cardiovascular diseases. LA plays a complementary role in cardiac performance by modulating left ventricular (LV) function. Transthoracic two-dimensional (2D) phasic volumes and Doppler echocardiography can measure LA function non‑invasively. However, evaluation of LA deformation derived from 2D speckle tracking echocardiography (STE) is a new feasible and promising approach for assessment of LA mechanics. These parameters are able to detect subclinical LA dysfunction in different pathological condition. Normal ranges for LA deformation and cut-off values to diagnose LA dysfunction with different diseases have been reported, but data are still conflicting, probably because of some methodological and technical issues. This review highlights the importance of an unique standardized technique to assess the LA phasic functions by STE, and discusses recent studies on the most important clinical applications of this technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Cardiac remodeling is defined as a group of molecular, cellular and interstitial changes that manifest clinically as changes in size, mass, geometry and function of the heart after injury. The process results in poor prognosis because of its association with ventricular dysfunction and malignant arrhythmias. Here, we discuss the concepts and clinical implications of cardiac remodeling, and the pathophysiological role of different factors, including cell death, energy metabolism, oxidative stress, inflammation, collagen, contractile proteins, calcium transport, geometry and neurohormonal activation. Finally, the article describes the pharmacological treatment of cardiac remodeling, which can be divided into three different stages of strategies: consolidated, promising and potential strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Numerous studies show the benefits of exercise training after myocardial infarction (MI). Nevertheless, the effects on function and remodeling are still controversial. Objectives: To evaluate, in patients after (MI), the effects of aerobic exercise of moderate intensity on ventricular remodeling by cardiac magnetic resonance imaging (CMR). Methods: 26 male patients, 52.9 ± 7.9 years, after a first MI, were assigned to groups: trained group (TG), 18; and control group (CG), 8. The TG performed supervised aerobic exercise on treadmill twice a week, and unsupervised sessions on 2 additional days per week, for at least 3 months. Laboratory tests, anthropometric measurements, resting heart rate (HR), exercise test, and CMR were conducted at baseline and follow-up. Results: The TG showed a 10.8% reduction in fasting blood glucose (p = 0.01), and a 7.3-bpm reduction in resting HR in both sitting and supine positions (p < 0.0001). There was an increase in oxygen uptake only in the TG (35.4 ± 8.1 to 49.1 ± 9.6 mL/kg/min, p < 0.0001). There was a statistically significant decrease in the TG left ventricular mass (LVmass) (128.7 ± 38.9 to 117.2 ± 27.2 g, p = 0.0032). There were no statistically significant changes in the values of left ventricular end-diastolic volume (LVEDV) and ejection fraction in the groups. The LVmass/EDV ratio demonstrated a statistically significant positive remodeling in the TG (p = 0.015). Conclusions: Aerobic exercise of moderate intensity improved physical capacity and other cardiovascular variables. A positive remodeling was identified in the TG, where a left ventricular diastolic dimension increase was associated with LVmass reduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Smoking consumption alters cardiac autonomic function. Objective: Assess the influence of the intensity of smoking and the nicotine dependence degree in cardiac autonomic modulation evaluated through index of heart rate variability (HRV). Methods: 83 smokers, of both genders, between 50 and 70 years of age and with normal lung function were divided according to the intensity of smoking consumption (moderate and severe) and the nicotine dependency degree (mild, moderate and severe). The indexes of HRV were analyzed in rest condition, in linear methods in the time domain (TD), the frequency domain (FD) and through the Poincaré plot. For the comparison of smoking consumption, unpaired t test or Mann-Whitney was employed. For the analysis between the nicotine dependency degrees, we used the One-way ANOVA test, followed by Tukey's post test or Kruskal-Wallis followed by Dunn's test. The significance level was p < 0,05. Results: Differences were only found when compared to the different intensities of smoking consumption in the indexes in the FD. LFun (62.89 ± 15.24 vs 75.45 ± 10.28), which corresponds to low frequency spectrum component in normalized units; HFun (37.11 ± 15.24 vs 24.55 ± 10.28), which corresponds to high frequency spectrum component in normalized units and in the LF/HF ratio (2.21 ± 1.47 vs 4.07 ± 2.94). However, in the evaluation of nicotine dependency, significant differences were not observed (p > 0.05). Conclusion: Only the intensity of smoking consumption had an influence over the cardiac autonomic modulation of the assessed tobacco smokers. Tobacco smokers with severe intensity of smoking consumption presented a lower autonomic modulation than those with moderate intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Right-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes. Objective: To assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis. Methods: Male Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05). Results: Higher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals. Conclusion: The changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: We have studied human adult cardiac progenitor cells (CPCs) based on high aldehyde dehydrogenase activity (ALDH-hi), a property shared by many stem cells across tissues and organs. However, the role of ALDH in stem cell function is poorly known. In humans, there are 19 ALDH isoforms with different biological activities. The isoforms responsible for the ALDH-hi phenotype of stem cells are not well known but they may include ALDH1A1 and ALDH1A3 isoforms, which function in all-trans retinoic acid (RA) cell signaling. ALDH activity has been shown to regulate hematopoietic stem cell function via RA. We aimed to analyze ALDH isoform expression and the role of RA in human CPC function. Methods: Human adult CPCs were isolated from atrial appendage samples from patients who underwent heart surgery for coronary artery or valve disease. Atrial samples were either cultured as primary explants or enzymatically digested and sorted for ALDH activity by FACS. ALDH isoforms were determined by qRT-PCR. Cells were cultured in the presence or absence of the specific ALDH inhibitor DEAB, with or without RA. Induction of cardiac-specific genes in cells cultured in differentiation medium was measured by qRT-PCR. Results: While ALDH-hi CPCs grew in culture and could be expanded, ALDH-low cells grew poorly. CPC isolated as primary explant outgrowths expressed high levels of ALDH1A3 but not of other isoforms. CPCs isolated from cardiospheres expressed relatively high levels of all the 11 isoforms tested. In contrast, expanded CPCs and cardiosphere-derived cells expressed low levels of all ALDH isoforms. DEAB inhibited CPC growth in a dose-dependent manner, whereas RA rescued CPC growth in the presence of DEAB. In differentiation medium, ALDH-hi CPCs expressed approximately 300-fold higher levels of cardiac troponin T compared with their ALDH-low counterparts. Conclusions: High ALDH activity identifies human adult cardiac cells with high growth and cardiomyogenic potential. ALDH1A3 and, possibly, ALDH1A1 isoforms account for high ALDH activity and RA-mediated regulation of CPC growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute cardiovascular dysfunction occurs perioperatively in more than 20% of cardiosurgical patients, yet current acute heart failure (HF) classification is not applicable to this period. Indicators of major perioperative risk include unstable coronary syndromes, decompensated HF, significant arrhythmias and valvular disease. Clinical risk factors include history of heart disease, compensated HF, cerebrovascular disease, presence of diabetes mellitus, renal insufficiency and high-risk surgery. EuroSCORE reliably predicts perioperative cardiovascular alteration in patients aged less than 80 years. Preoperative B-type natriuretic peptide level is an additional risk stratification factor. Aggressively preserving heart function during cardiosurgery is a major goal. Volatile anaesthetics and levosimendan seem to be promising cardioprotective agents, but large trials are still needed to assess the best cardioprotective agent(s) and optimal protocol(s). The aim of monitoring is early detection and assessment of mechanisms of perioperative cardiovascular dysfunction. Ideally, volume status should be assessed by 'dynamic' measurement of haemodynamic parameters. Assess heart function first by echocardiography, then using a pulmonary artery catheter (especially in right heart dysfunction). If volaemia and heart function are in the normal range, cardiovascular dysfunction is very likely related to vascular dysfunction. In treating myocardial dysfunction, consider the following options, either alone or in combination: low-to-moderate doses of dobutamine and epinephrine, milrinone or levosimendan. In vasoplegia-induced hypotension, use norepinephrine to maintain adequate perfusion pressure. Exclude hypovolaemia in patients under vasopressors, through repeated volume assessments. Optimal perioperative use of inotropes/vasopressors in cardiosurgery remains controversial, and further large multinational studies are needed. Cardiosurgical perioperative classification of cardiac impairment should be based on time of occurrence (precardiotomy, failure to wean, postcardiotomy) and haemodynamic severity of the patient's condition (crash and burn, deteriorating fast, stable but inotrope dependent). In heart dysfunction with suspected coronary hypoperfusion, an intra-aortic balloon pump is highly recommended. A ventricular assist device should be considered before end organ dysfunction becomes evident. Extra-corporeal membrane oxygenation is an elegant solution as a bridge to recovery and/or decision making. This paper offers practical recommendations for management of perioperative HF in cardiosurgery based on European experts' opinion. It also emphasizes the need for large surveys and studies to assess the optimal way to manage perioperative HF in cardiac surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current American Academy of Neurology (AAN) guidelines for outcome prediction in comatose survivors of cardiac arrest (CA) have been validated before the therapeutic hypothermia era (TH). We undertook this study to verify the prognostic value of clinical and electrophysiological variables in the TH setting. A total of 111 consecutive comatose survivors of CA treated with TH were prospectively studied over a 3-year period. Neurological examination, electroencephalography (EEG), and somatosensory evoked potentials (SSEP) were performed immediately after TH, at normothermia and off sedation. Neurological recovery was assessed at 3 to 6 months, using Cerebral Performance Categories (CPC). Three clinical variables, assessed within 72 hours after CA, showed higher false-positive mortality predictions as compared with the AAN guidelines: incomplete brainstem reflexes recovery (4% vs 0%), myoclonus (7% vs 0%), and absent motor response to pain (24% vs 0%). Furthermore, unreactive EEG background was incompatible with good long-term neurological recovery (CPC 1-2) and strongly associated with in-hospital mortality (adjusted odds ratio for death, 15.4; 95% confidence interval, 3.3-71.9). The presence of at least 2 independent predictors out of 4 (incomplete brainstem reflexes, myoclonus, unreactive EEG, and absent cortical SSEP) accurately predicted poor long-term neurological recovery (positive predictive value = 1.00); EEG reactivity significantly improved the prognostication. Our data show that TH may modify outcome prediction after CA, implying that some clinical features should be interpreted with more caution in this setting as compared with the AAN guidelines. EEG background reactivity is useful in determining the prognosis after CA treated with TH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The RCP is a 14 French collapsable percutaneous cardiovascular support device positioned in the descending part of the thoracic aorta via the femoral artery. A 10 patient first in man study demonstrated device safety and significant improvement in renal function among high risk PCI patients. We now report haemodynamic and renal efficacy in patients with ADHF.Methods: Prospective non randomised study seeking to recruit 20 patients with ADHF with a need for inotropic or mechanical circulatory support with: i) EF < 30% ii)Cardiac index(CI) < 2.2 L / min / m2 Outcome measures included: 1) Cardiac index (CI) 2) Pulmonary Capillary Wedge Pressure (PCWP) 3) Urine output / serum creatinine 4) Vascular / device complications 5) 30 day mortalityResults: INTERIM ANALYSIS (n=12) The mean age of the study group was 64 years, with a mean baseline creatinine of 193 umol/L, eGFR 38 ml/min. The intended RCP treatment period was 24 hours. During RCP treatment there was a significant mean reduction of PCWP at 4 hours of 17% (25 to 21 mmHg p=0.04). Mean CI increased at 12 hours by 11%, though not reaching significance (1.78 to 1.96 L/min/m2 p=0.08). RCP insertion prompted substantial diuresis. Urine output tripled over the first 12 hours compared to baseline (55 ml/hr vs 213 ml/hr p=0.03). This was associated with significantly improved renal function, a 28% reduction in serum creatinine at 12 hours (193 to 151 umol/L p=0.003), and a increase in eGFR from 38 ml/min to 50 ml/min (p=0.0007). 2 patients previously refused cardiac transplantation were reassessed and successfully transplanted within 9 months of RCP treatment on the basis of demonstrable renal reversibility. There were no vascular or device complications. There were 2 deaths at 30 days, one from multi-organ failure and sepsis, and one from intractable heart failure - neither were device related.Conclusion: RCP support in ADHF patients was associated with improved haemodynamics, and an improvement in renal function. The Reitan Catheter Pump may have a role in providing percutaneous cardiovascular and renal support in the acutely decompensated cardiac patient, and may have a role in suggesting renal reversibility in potential cardiac transplant patients. Further data will be reported at recruitment completion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular magnetic resonance (CMR) is a rapidly emerging non-invasive imaging technique free of X-Ray and offers higher spatial resolution than alternative forms of cardiac imaging for the assessment of left ventricular (LV) anatomy, function, and viability due to the unique capability of myocardial tissue characterization after gadolinium-chelates contrast administration. This imaging technique has clinical utility over a broad spectrum of heart diseases: ranging from ischaemic to non ischaemic aetiologies. Cardiomyopathies (CMP) are a heterogeneous group of diseases of the myocardium associated with architectural abnormalities and mechanical dysfunction. CMR can help excluding coronary artery disease and can provide positive diagnostic features for several CMP resulted in better diagnosis and management, Leading to improvements in mortality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique for fast imaging of regional myocardial function using a spiral acquisition in combination with strain-encoded (SENC) magnetic resonance imaging (MRI) is presented in this paper. This technique, which is termed fast-SENC, enables scan durations as short as a single heartbeat. A reduced field of view (FOV) without foldover artifacts was achieved by localized SENC, which selectively excited the region around the heart. The two images required for SENC imaging (low- and high-tuning) were acquired in an interleaved fashion throughout the cardiac cycle to further shorten the scan time. Regional circumferential contraction and longitudinal shortening of both the left ventricle (LV) and right ventricle (RV) were examined in long- and short-axis views, respectively. The in vivo results obtained from five human subjects and five infarcted dogs are presented. The results of the fast-SENC technique in a single heartbeat acquisition were comparable to those obtained by conventional SENC in a long acquisition time. Therefore, fast-SENC may prove useful for imaging during stress or arrhythmia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cell antigen-1 (Sca-1) has been used to identify cardiac stem cells in the mouse heart. To investigate the function of Sca-1 in aging and during the cardiac adaptation to stress, we used Sca-1-deficient mice. These mice developed dilated cardiomyopathy [end-diastolic left ventricular diameter at 18 wk of age: wild-type (WT) mice, 4.2 mm ± 0.3; Sca-1-knockout (Sca-1-KO) mice, 4.6 mm ± 0.1; ejection fraction: WT mice, 51.1 ± 2.7%; Sca-1-KO mice, 42.9 ± 2.7%]. Furthermore, the hearts of mice lacking Sca-1 demonstrated exacerbated susceptibility to pressure overload [ejection fraction after transaortic constriction (TAC): WT mice, 43.5 ± 3.2%; Sca-1-KO mice, 30.8% ± 4.0] and increased apoptosis, as shown by the 2.5-fold increase in TUNEL(+) cells in Sca-1-deficient hearts under stress. Sca-1 deficiency affected primarily the nonmyocyte cell fraction. Indeed, the number of Nkx2.5(+) nonmyocyte cells, which represent a population of cardiac precursor cells (CPCs), was 2-fold smaller in Sca-1 deficient neonatal hearts. In vitro, the ability of CPCs to differentiate into cardiomyocytes was not affected by Sca-1 deletion. In contrast, these cells demonstrated unrestricted differentiation into cardiomyocytes. Interestingly, proliferation of cardiac nonmyocyte cells in response to stress, as judged by BrdU incorporation, was higher in mice lacking Sca-1 (percentages of BrdU(+) cells in the heart after TAC: WT mice, 4.4 ± 2.1%; Sca-1-KO mice, 19.3 ± 4.2%). These data demonstrate the crucial role of Sca-1 in the maintenance of cardiac integrity and suggest that Sca-1 restrains spontaneous differentiation in the precursor population. The absence of Sca-1 results in uncontrolled precursor recruitment, exhaustion of the precursor pool, and cardiac dysfunction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.