951 resultados para CYCLOPENTADIENYL LIGAND
Resumo:
The reaction of cis-[RuCl2(dppb)(N-N)], dppb = 1,4-bis(diphenylphosphino)butane, complexes with the ligand HSpymMe(2), 4,6-dimethyl-2-mercaptopyrimidine, yielded the cationic complexes [Ru(SpymMe(2))(dppb)(N-N)]PF6, N-N = bipy (1) and Me-bipy (2), bipy = 2,2`-bipyridine and Me-bipy = 4,4`dimethyl-2,2`-bipyridine, which were characterized by spectroscopic and electrochemical techniques and X-ray crystallography and elemental analysis. Additionally, preliminary in vitro tests for antimycobacterial activity against Mycobacterium tuberculosis H37Rv ATCC 27264 and antitumor activity against the MDA-MB-231 human breast tumor cell line were carried out on the new complexes and also on the precursors cis-[RuCl2(dppb)(N-N)], N-N = bipy (3) and Me-bipy (4) and the free ligands dppb, bipy, Me-bipy and SpymMe(2). The minimal inhibitory concentration (MIC) of compounds needed to kill 90% of mycobacterial cells and the IC50 values for the antitumor activity were determined. Compounds 1-4 exhibited good in vitro activity against M. tuberculosis, with MIC values ranging between 0.78 and 6.25 mu g/mL, compared to the free ligands (MIC of 25 to >50 mu g/mL) and the drugs used to treat tuberculosis. Complexes I and 2 also showed promising antitumor activity, with IC50 values of 0.46 +/- 0.02 and 0.43 +/- 0.08 mu M, respectively, against MDA-MB-231 breast tumor cells. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Thyroid hormone receptors (TR) are hormone-dependent transcription regulators that play a major role in human health, development, and metabolic functions. The thyroid hormone resistance syndrome, diabetes, obesity, and some types of cancer are just a few examples of important diseases that are related to TR malfunctioning, particularly impaired hormone binding. Ligand binding to and dissociation from the receptor ultimately control gene transcription and, thus, detailed knowledge of binding and release mechanisms are fundamental for the comprehension of the receptor`s biological function and development of pharmaceuticals. In this work, we present the first computational study of ligand entry into the ligand binding domain (LBD) of a nuclear receptor. We report molecular dynamics simulations of ligand binding to TRs using a generalization of the steered molecular dynamics technique designed to perform single-molecule pulling simulations along arbitrarily nonlinear driving pathways. We show that only gentle protein movements and conformational adaptations are required for ligand entry into the LBDs and that the magnitude of the forces applied to assist ligand binding are of the order of the forces involved in ligand dissociation. Our simulations suggest an alternative view for the mechanisms ligand binding and dissociation of ligands from nuclear receptors in which ligands can simply diffuse through the protein surface to reach proper positioning within the binding pocket. The proposed picture indicates that the large-amplitude protein motions suggested by the apo- and holo-RXR alpha crystallographic structures are not required, reconciling conformational changes of LBDs required for ligand entry with other nuclear receptors apo-structures that resemble the ligand-bound LBDs.
Resumo:
The electrochemical oxidation of anodic metal (cobalt, nickel, copper, zinc and cadmium) in an acetonitrile solution of the Schiff-base ligand 2-(tosylamino)-N-[2-(tosylamino)-benzylidene] aniline (H(2)L) afforded the homoleptic compounds [ML]. The addition of 1,1-diphenylphosphanylmethane (dppm), 2,2`-bipyridine (bipy) or 1,10-phenanthroline (phen) to the electrolytic phase gave the heteroleptic complexes [NiL(dppm)], [ML(bipy)] and [ML(phen)]. The crystal structures of H(2)L (1), [NiL] (2), [CuL] (3), [NiL(dppm)] (4), [CoL(phen)] (5), [CuL(bipy)] (6) and [Zn(Lphen)] (7) were determined by X-ray diffraction. The homoleptic compounds [NiL] and [CuL] are mononuclear with a distorted square planar [MN(3)O] geometry with the Schiff base acting as a dianionic (N(amide)N(amide)N(imine)O(tosyl)) tetradentate ligand. Both compounds exhibit an unusual pi-pi stacking interaction be-tween a six-membered chelate ring containing the metal and a phenylic ring of the ligand. In the heteroleptic complex [NiL(dppm)], the nickel atom is in a distorted tetrahedral [NiN(3)P] environment defined by the imine, two amide nitrogen atoms of the L(2-) dianionic tridentate ligand and one of the phosphorus atoms of the dppm molecule. In the other heteroleptic complexes, [CoL(phen)], [CuL(bipy)] and [ZnL(phen)], the metal atom is in a five-coordinate environment defined by the imine, two amide nitrogen atoms of the dianionic tridentate ligand and the two bipyridine or phenanthroline nitrogen atoms. The compounds were characterized by microanalysis, IR and UV/Vis (Co, Ni and Cu complexes) spectroscopy, FAB mass spectrometry and (1)H NMR ([NiL] and Zn and Cd complexes) and EPR spectroscopy (Cu complexes).
Resumo:
Estrogen Receptor (ER) is an important target for pharmaceutical design. Like other ligand-dependent transcription factors, hormone binding regulates ER transcriptional activity. Nevertheless, the mechanisms by which ligands enter and leave ERs and other nuclear receptors remain poorly understood. Here, we report results of locally enhanced sampling molecular dynamics simulations to identify dissociation pathways of two ER ligands [the natural hormone 17 beta-estradiol (E-2) and the selective ER modulator raloxifene (RAL)] from the human ER alpha ligand-binding domain in monomeric and dimeric forms. E-2 dissociation occurs via three different pathways in ER monomers. One resembles the mousetrap mechanism (Path I), involving repositioning of helix 12 (H12), others involve the separation of H8 and H11 (Path II), and a variant of this pathway at the bottom of the ligand-binding domain (Path II`). RAL leaves the receptor through Path I and a Path I variant in which the ligand leaves the receptor through the loop region between H11 and H12 (Path I`). Remarkably, ER dimerization strongly suppresses Paths II and II` for E-2 dissociation and modifies RAL escape routes. We propose that differences in ligand release pathways detected in the simulations for ER monomers and dimers provide an explanation for previously observed effects of ER quaternary state on ligand dissociation rates and suggest that dimerization may play an important, and hitherto unexpected, role in regulation of ligand dissociation rates throughout the nuclear receptor family.
Resumo:
In the course of our research program to discover novel antileishmanial agents, a biological screening of natural products against Leishmania major promastigotes allowed the identification of a furoquinoline alkaloid (1) and a furanocoumarin (2) as new hits. Subsequently, an integrated ligand-based virtual screening approach was employed to search for new antileishmanial compounds using these naturally occurring molecules as templates. Fourteen out of 40 compounds selected from a database of about 800,000 compounds (extracted from ZINC, a free database for virtual screening) were experimentally confirmed to possess significant in vitro antileishmanial properties. The application of ligand-based virtual screening as a complementary approach to experimental natural product screening was a useful strategy to facilitate the identification of new promising lead candidates.
Resumo:
A new family of compounds is presented as potential carbon monoxide releasing molecules (CORMs). These compounds, based on tetrachlorocarbonyliridate(III) derivatives, were synthesized and fully characterized by X-ray diffraction, electrospray mass spectrometry, IR. NMR, and density functional theory calculations. The rate of CO release was studied via the myoglobin assay. The results showed that the rate depends on the nature of the sixth ligand, trans to CO, and that a significant modulation on the release rate can be produced by changing the ligand. The reported compounds are soluble in aqueous media, and the rates of CO release are comparable with those for known CORMs, releasing CO at a rate of 0.03-0.58 mu M min(-1) in a 10 mu M solution of myoglobin and 10 mu M of the complexes.
Resumo:
Transthyretin (TTR) is a tetrameric beta-sheet-rich transporter protein directly involved in human amyloid diseases. Several classes of small molecules can bind to TTR delaying its amyloid fibril formation, thus being promising drug candidates to treat TTR amyloidoses. In the present study, we characterized the interactions of the synthetic triiodo L-thyronine analogs and thyroid hormone nuclear receptor TR beta-selecfive agonists GC-1 and GC-24 with the wild type and V30M variant of human transthyretin (TTR). To achieve this aim, we conducted in vitro TTR acid-mediated aggregation and isothermal titration calorimetry experiments and determined the TTR:GC-1 and TTR:GC-24 crystal structures. Our data indicate that both GC-1 and GC-24 bind to TTR in a non-cooperative manner and are good inhibitors of TTR aggregation, with dissociation constants for both hormone binding sites (HBS) in the low micromolar range. Analysis of the crystal structures of TTRwt:GC-1(24) complexes and their comparison with the TTRwt X-ray structure bound to its natural ligand thyroxine (T4) suggests, at the molecular level, the basis for the cooperative process displayed by T4 and the non-cooperative process provoked by both GC-1 and GC-24 during binding to TTR. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Understanding the molecular basis of the binding modes of natural and synthetic ligands to nuclear receptors is fundamental to our comprehension of the activation mechanism of this important class of hormone regulated transcription factors and to the development of new ligands. Thyroid hormone receptors (TR) are particularly important targets for pharmaceuticals development because TRs are associated with the regulation of metabolic rates, body weight, and circulating levels of cholesterol and triglycerides in humans. While several high-affinity ligands are known, structural information is only partially available. In this work we obtain structural models of several TR-ligand complexes with unknown structure by docking high affinity ligands to the receptors` ligand binding domain with subsequent relaxation by molecular dynamics simulations. The binding modes of these ligands are discussed providing novel insights into the development of TR ligands. The experimental binding free energies are reasonably well-reproduced from the proposed models using a simple linear interaction energy free-energy calculation scheme.
Resumo:
The new trinuclear gadolinium complex [Gd(3)L(2)(NO(3))(2)(H(2)O)(4)]NO(3)center dot 8H(2)O (1) with the unsymmetrical ligand 2-[N-bis-(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-bis(2-hydroxy-2-oxoethyl)aminomethyl] phenol (H(3)L) was synthesized and characterized. The new ligand H(3)L was obtained in good yield. Complex I crystallizes in an orthorhombic cell, space group Pcab. Kinetic studies show that complex 1 is highly active in the hydrolysis of the substrate 2,4-bis(dinitrophenyl)phosphate (K(m) = 4.09 mM, V(max) = 2.68 x 10(-2) mM s(-1), and k(cat) = V(max)/[1] = 0.67 s(-1)). Through a potentiometric study and determination of the kinetic behavior of 1 in acetonitrile/water solution, the species present in solution could be identified, and a trinuclear monohydroxo species appears to be the most prominent catalyst under mild conditions. Complex 1 displays high efficiency in DNA hydrolytic cleavage, and complete kinetic studies were carried out (K(m) = 4.57 x 10(-4) M, K(cat)` = 3.42 h(-1), and k(cat)`/K(m) = 7.48 x 10(3) M(-1) h(-1)). Studies with a radical scavenger (dimethyl sulfoxide, DMSO) showed that it did not inhibit the activity, indicating the hydrolytic action of 1 in the cleavage of DNA, and studies on the incubation of distamycin with plasmid DNA suggest that 1 is regio-specific, interacting with the minor groove of DNA.
Resumo:
The ligand binding domain (LBD) of nuclear hormone receptors adopts a very compact, mostly alpha-helical structure that binds specific ligands with very high affinity. We use circular dichroism spectroscopy and high-temperature molecular dynamics Simulations to investigate unfolding of the LBDs of thyroid hormone receptors (TRs). A molecular description of the denaturation mechanisms is obtained by molecular dynamics Simulations of the TR alpha and TR beta LBDs in the absence and in the presence of the natural ligand Triac. The Simulations Show that the thermal unfolding of the LBD starts with the loss of native contacts and secondary Structure elements, while the Structure remains essentially compact, resembling a molten globule state. This differs From most protein denaturation simulations reported to date and suggests that the folding mechanism may start with the hydrophobic collapse of the TR LBDs. Our results reveal that the stabilities of the LBDs of the TR alpha and TR beta Subtypes are affected to different degrees by the binding of the isoform selective ligand Triac and that ligand binding confers protection against thermal denaturation and unfolding in a subtype specific manner. Our Simulations indicate two mechanisms by which the ligand stabilizes the LBD: (1) by enhancing the interactions between H8 and H 11, and the interaction of the region between H I and the Omega-loop with the core of the LBD, and (2) by shielding the hydrophobic H6 from hydration.
Resumo:
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor beta (TR beta) vs. TR alpha reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TR beta-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331 beta) in the TR beta ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3`-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TR beta selectivity. TR x-ray structures reveal better fit of ligand with the TR alpha LBC. The TR beta LBC, however, expands relative to TR alpha in the presence of Triac (549 angstrom(3) vs. 461 angstrom(3)), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TR beta and permits greater flexibility of the Triac carboxylate group in TR beta than in TR alpha. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TR beta, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.
Resumo:
N-Trifluoracyl beta-chalcogeno amides and N-perfluoracyl beta-thio amide ligands were prepared by a simple and efficient reaction sequence. These new ligands were evaluated in palladium-catalyzed alkylation of rac-(E)-1,3-diphenyl-2-propenyl acetate in the presence of dimethyl malonate and an enantioselectivity of up to 99% was obtained. After catalysis, the fluorous ligand can be easily recovered by liquid-liquid extraction and reused without loss in the activity. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fabrication and electroluminescent properties of devices containing europium complexes of general formula [Eu(ACIND)(3)(TPPO)(2)], where ACIND, 2-acyl-1,3-indandionate ligands: and TPPO, triphenylphosphine oxide. as emitter layers are discussed. The double-layer devices based on these complexes present the following configurations: device 1: ITO/TPD/[Eu(AlND)(3)(TPPO)(2)]/Al: device 2: ITO/TPD/[Eu(ISOV-IND)(3)(TPPO)(2)]/Al and device 3: ITO/TPD/[Eu(BIND)(3)(TPPO)(2)]/Al, where AlND, 2-acetyl-1,3-indandionate; ISOVIND, 2-isovaleryl-1,3-indandionate; and BIND, 2-benzoyl-1,3-indandionate, respectively. These devices exhibited photo and electroluminescent emissions. An important characteristic presented by devices is that their electroluminescent (EL) spectra, in the region of (5)D(0) -> (7)F(J) (J = 0, 1, 2, 3 and 4) transitions of Eu(3+) ion, show profiles that are different from photoluminescent (PL) ones. In addition to narrow bands arising from intraconfigurational-4f(6) transitions, devices 1 and 2 also exhibited a broad band with maximum at around 500 nm which is assigned to electrophosphorescence from the indandionate ligands. On the other hand, EL spectra of device 3 present only narrow bands from (5)D(0) -> (7)F(J) transitions. [Eu(ACIND)(3)(TPPO)(2)] complexes are promising candidates to prepare efficient organic light-emitting devices (OLEDs) when compared with those containing Eu(3+)-complexes of aliphatic beta-diketonate anions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The triruthenium carboxylate cluster [Ru(3)O(OAc)(6)(py)(2)(bpp)](+) (OAc = acetate) containing the bridging 1,3-bis(4-pyridyl)propane (bpp) ligand, and its dimeric species [{Ru(3)O(OAc)(6)(py(2))}(2)(mu-bpp)](2+) were synthesized in order to investigate their inclusion compounds with beta-cyclodextrin (beta-CD). Characterization of the complexes was carried out based on spectroscopic, electrochemical and spectroelectrochemical techniques, while the formation of inclusion complexes was evaluated using (1)H NMR/NOESY spectroscopy. Since bpp is a flexible ligand, a DFT study was carried out in order to characterize its conformational isomers and their possible role in the host-guest chemistry with beta-CD. Instead of observing the formation of inclusion compounds with different stoichiometries, we observed the formation of 1:1 bpp/beta-CD compounds in which the bpp ligand assumes different conformations. The assembly of polymetallic rotaxane species was successfully demonstrated by monitoring the (1)H NMR spectra of the monomeric cluster species in the presence of aquapentacyanoferrate(II) ions and beta-CD.
Resumo:
The synthesis, structural investigation, and photophysical properties of the complex [Tb(TTA)(2)(NO(3)) (TPPO)(2)] are reported. Unlike the analog tris-diketonate complex [Tb(TTA)(3)(TPPO)(2)], the new complex presents abnormally high luminescence intensity centered on the terbium ion. Our results clearly suggest a higher energy transfer efficiency from the TEA antenna ligand to the Tb(III) ion in the bis-diketonate complex compared with that in the tris-diketonate complex. A mechanism involving the increasing of triplet state energy when one TTA ligand is replaced by the NO(3)(-) group in the first coordination sphere is suggested and experimentally investigated to explain the anomalous luminescence properties of the new complex [Tb(TTA)(2)(NO(3))(TPPO)(2)]. (C) 2010 Elsevier B.V. All rights reserved.