967 resultados para CORALS
Resumo:
Oxygen and carbon isotope analyses have been carried out on calcareous skeletons of important recent groups of organisms. Annual temperature ranges and distinct developmental stages can be reconstructed from single shells with the aid of the micro-sampling technique made possible by modern mass-spectrometers. This is in contrast to the results of earlier studies which used bulk sampIes. The skeletons analysed are from Bermuda, the Philippines, the Persian Gulf and the continental margin off Peru. In these environments, seasonal salinity ranges and thus annual variations in the isotopic composition of the water are small. In addition, environmental parameters are weIl documented in these areas. The recognition of seasonal isotopic variations is dependant on the type of calcification. Shells built up by carbonate deposition at the margin, such as molluscs, are suitable for isotopic studies. Analysis is more difficult where chambers are added at the margin of the shell but where older chambers are simultaneously covered by a thin veneer of carbonate e. g. in rotaliid foraminifera. Organisms such as calcareous algae or echinoderms that thicken existing calcareous parts as weIl as growing in length and breadth are the most difficult to analyse. All organisms analysed show temperature related oxygen-isotope fractionation. The most recent groups fractionate oxygen isotopes in accordance with established d18O temperature relationships (Tab. 18, Fig. 42). These groups are deep-sea foraminifera, planktonic foraminifera, serpulids, brachiopods, bryozoa, almost all molluscs, sea urchins, and fish (otoliths). A second group of organisms including the calcareous algae Padina, Acetabularia, and Penicillus, as weIl as barnacles, cause enrichment of the heavy isotope 18O. Finally, the calcareous algae Amphiroa, Cymopolia and Halimeda, the larger foraminifera, corals, starfish, and holothurians cause enrichment of the lighter isotope 16O. Organisms causing non-equilibrium fractionation also record seasonal temperature variations within their skeletons which are reflected in stable-oxygen-isotope patterns. With the exception of the green algae Halimeda and Penicillus, all organisms analysed show lower d13C values than calculated equilibrium values (Tab. 18, Fig. 42). Especially enriched with the lighter isotope 12C are animals such as hermatypic corals and larger foraminifera which exist in symbiosis with other organisms, but also ahermatypic corals, starfish, and holothurians. With increasing age of the organisms, seven different d13C trends were observed within the skeletons. 1) No d13C variations are observed in deep-sea foraminifera presumably due to relatively stable environmental conditions. 2) Lower d13C values occur in miliolid larger foraminifera and are possibly related to increased growth with increasing age of the foraminifera. 3) Higher values are found in planktonic foraminifera and rotaliid larger foraminifera and can be explained by a slowing down of growth with increasing age. 4) A sudden change to lower d13C values at a distinct shell size occurs in molluscs and is possibly caused by the first reproductive event. 5) A low-high-Iow cycle in calcareous algae is possibly caused by variations in the stage of calcification or growth. 6) A positive correlation between d18O and d13C values is found in some hermatypic corals, all ahermatypic corals, in the septa of Nautilus and in the otoliths of fish. In hermatypic corals from tropical areas, this correlation is the result of the inverse relationship between temperature and light caused by summer cloud cover; in other groups it is inferred to be due to metabolic processes. 7) A negative correlation between d18O and d13C values found in hermatypic corals from the subtropics is explained by the sympathetic relationship between temperature and light in these latitudes. These trends show that the carbon isotope fractionation is controlled by the biology of the respective carbonate producing organisms. Thus, the carbon isotope distribution can provide information on the symbiont-host relationship, on metabolic processes and calcification and growth stages during ontogenesis of calcareous marine organisms.
Resumo:
The HERMES cold-water coral database is a combination of historical and published sclerectinia cold-water coral occurrences (mainly Lophelia pertusa) and new records of the HERMES project along the European margin. This database will be updated if new findings are reported. New or historical data can be sent to Ben De Mol (mailto:bendemol@ub.edu). Besides geocodes a second category indicates the coral species and if they are sampled alive or dead. If absolute dating is available of the corals this is provide together with the method. Only the framework building cold-water corals are selected: Lophelia pertusa, Madrepora oculata and common cold-water corals often associated with the framework builders like: Desmophyllum sp and Dendrophylia sp. in comments other observed corals are indicated. Another field indicates if the corals are part of a large build-up or solitary. A third category of parameters is referencing to the quality of the represented data. In this category are the following parameters indicated: source of reference, source type (such as Fishermen location, scientific paper, cruise reports). sample code and or name and sample type (e.g. rock dredge, grab, video line). These parameters must allow an assessment of the quality of the described parameters.
Resumo:
The atmospheric partial pressure of carbon dioxide (pCO2) will almost certainly be double that of pre-industrial levels by 2100 and will be considerably higher than at any time during the past few million years1. The oceans are a principal sink for anthropogenic CO2 where it is estimated to have caused a 30% increase in the concentration of H+ in ocean surface waters since the early 1900s and may lead to a drop in seawater pH of up to 0.5 units by 2100. Our understanding of how increased ocean acidity may affect marine ecosystems is at present very limited as almost all studies have been in vitro, short-term, rapid perturbation experiments on isolated elements of the ecosystem4, 5. Here we show the effects of acidification on benthic ecosystems at shallow coastal sites where volcanic CO2 vents lower the pH of the water column. Along gradients of normal pH (8.1-8.2) to lowered pH (mean 7.8-7.9, minimum 7.4-7.5), typical rocky shore communities with abundant calcareous organisms shifted to communities lacking scleractinian corals with significant reductions in sea urchin and coralline algal abundance. To our knowledge, this is the first ecosystem-scale validation of predictions that these important groups of organisms are susceptible to elevated amounts of pCO2. Sea-grass production was highest in an area at mean pH 7.6 (1,827 µatm pCO2) where coralline algal biomass was significantly reduced and gastropod shells were dissolving due to periods of carbonate sub-saturation. The species populating the vent sites comprise a suite of organisms that are resilient to naturally high concentrations of pCO2 and indicate that ocean acidification may benefit highly invasive non-native algal species. Our results provide the first in situ insights into how shallow water marine communities might change when susceptible organisms are removed owing to ocean acidification.
Resumo:
Using gas chromatography technique we examined molecular composition of n-alkanes and lignin from bottom sediments of a core 385 cm long collected in the region of the Blake-Bahama Abyssal Plain. We determined C_org concentrations and lignin composition in soils, mangrove roots and leaves, in algae Sargassum and Ascophyllum, in corals and timber of a sunken ship; they were compared with data on lignin in bottom sediments. Mixed planktonogenic and terrigenous origin of organic matter in the core was proved with different proportions of terrigenous and planktonogenic components at different levels. Multiple changes in dominating sources of organic matter over a period required for accumulation of a four meter thick sedimentary sequence (about 4 m) are shown as obtained from changes in composition and contents of organic-chemical markers referring to classes of n-alkanes and phenols.