944 resultados para CATION HOMEOSTASIS
Resumo:
Disturbances in electrolyte homeostasis are a frequent adverse side-effect of the administration of aminoglycoside antibiotics such as gentamicin, and the antineoplastic agent cis-platinum. The aims of this work were to further elucidate the site(s) and mechanism(s) by which these drugs may produce disturbances in the renal reabsorption of calcium and magnesium. These investigations were undertaken using a range of in vivo and in vitro techniques and models. Initially, a series of in vivo studies was conducted to delineate aspects of the acute and chronic effects of both drugs on renal electrolyte handling and to select and evaluate an appropriate animal model: subsequent investigations were focused on gentamicin. In a study of the acute and chronic effects of cis-platinum administration, there were pronounced acute changes in a variety of indices of nephrotoxic injury, including electrolyte excretion. Most effects resolved but there were chronic increases in the urinary excretion of calcium and magnesium. The renal response of three strains of rat (Fischer 344, Sprague-Dawley (SD), and Wistar) to a ranges of doses of gentamicin was also investigated. Drug administration produced substantially different responses between strains, in particular marked differences in calcium and magnesium excretion. The results suggested that the SD rat was an appropriately sensitive strain for use in further investigations. Acute infusion of gentamicin in the anaesthetised SD rat produced rapid, substantial increases in the fractional excretion of calcium and magnesium, while sodium and potassium output were unaffected, confirming previous results of similar experiments using F344 rats. Studies using lithium clearance measurements in the anaesthetised SD rat were undertaken to investigate the effects of gentamicin on proximal tubular calcium reabsorption. Lithium clearance was unaffected by acute gentamicin infusion, suggesting that the site of acute gentamicin-induced hypercalciuria may not be located in the proximal tubule. Inhibition of Ca2+ ATPase activity was investigated as a potential mechanism by which calcium reabsorption could be affected after aminoglycoside administration. In vitro, both Ca2+ ATPase and Na+/K+ ATPase activity could be similarly inhibited by the presence of aminoglycosides, in a dose-related manner. Whilst inhibition of Na+/K+ ATPase could be demonstrated biochemically after in vivo administration of gentamicin, there were no concurrent effects on Ca2+ ATPase activity, suggesting that inhibition of Ca2+ ATPase activity is unlikely to be a primary mechanism of aminoglycoside-induced reductions of calcium reabsorption. Histochemical studies could not discern inhibition of either Na+/K+ ATPase or Ca2+ ATPase activity after in vivo administration of gentamicin. Selection of renal cell lines for further investigative in vitro studies on the mechanisms of altered cation reabsorption was considered using MTT (3-(4,5,-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and Neutral Red cytotoxicity assays. The ability of LLC-PK1 and LLC-RK1 cell lines to correctly rank a series of nephrotoxic compounds with their known nephrotoxic potency in vivo was studied. Using these cell lines grown on semi-permeable inserts, alterations in the paracellular transport of 45Ca was investigated as a possible mechanism by which gentamicin could alter calcium reabsorption in vivo. Short term exposure (I h) of LLC-RK1 cells to gentamicin, via both cell surfaces, resulted in a reduction in paracellular permeability to both transepithelial 3H-mannitol and 45Ca fluxes. When LLC-RK1 cells were exposed via the apical surface only, similar dose-related reductions were seen to those observed when cells were exposed to the drug from both sides. Short-term basal exposure to gentamicin appeared to contribute less to the observed reductions in 3H-mannitol and 45Ca fluxes. Experiments investigating transepithelial movement of 45Ca and 3H-mannitol on LLC-PK1 cells after acute gentamicin exposure were inconclusive. Longer exposure (48 h) to gentamicin caused an increase in the permeability of the monolayer and a consequent increase in transepithelial 45Ca flux in the LLC-RK1 cell line; increases in permeability of LLC-PK1 cells to 45Ca and 3H-mannitol were not apparent under the same conditions. The site and mechanism at which gentamicin, in particular, alters calcium reabsorption cannot be definitively described from these studies. However, indirect evidence from lithium clearance studies suggests that the site of the lesion is unlikely to be located in the proximal tubule. The mechanism by which gentamicin exposure alters calcium reabsorption may be by reducing paracellular permeability to calcium rather than by altering active calcium transport processes.
Resumo:
VEGF-A activity is tightly regulated by ligand and receptor availability. Here we investigate the physiological function of heterodimers between VEGF receptor-1 (VEGFR-1; Flt-1) and VEGFR-2 (KDR; Flk-1) (VEGFR(1-2)) in endothelial cells with a synthetic ligand that binds specifically to VEGFR(1-2). The dimeric ligand comprises one VEGFR-2-specific monomer (VEGF-E) and a VEGFR-1-specific monomer (PlGF-1). Here we show that VEGFR(1-2) activation mediates VEGFR phosphorylation, endothelial cell migration, sustained in vitro tube formation and vasorelaxation via the nitric oxide pathway. VEGFR(1-2) activation does not mediate proliferation or elicit endothelial tissue factor production, confirming that these functions are controlled by VEGFR-2 homodimers. We further demonstrate that activation of VEGFR(1-2) inhibits VEGF-A-induced prostacyclin release, phosphorylation of ERK1/2 MAP kinase and mobilization of intracellular calcium from primary endothelial cells. These findings indicate that VEGFR-1 subunits modulate VEGF activity predominantly by forming heterodimer receptors with VEGFR-2 subunits and such heterodimers regulate endothelial cell homeostasis.
Resumo:
The dipeptide carnosine (β-alanyl-L-histidine) has contrasting but beneficial effects on cellular activity. It delays cellular senescence and rejuvenates cultured senescent mammalian cells. However, it also inhibits the growth of cultured tumour cells. Based on studies in several organisms, we speculate that carnosine exerts these apparently opposing actions by affecting energy metabolism and/or protein homeostasis (proteostasis). Specific effects on energy metabolism include the dipeptide's influence on cellular ATP concentrations. Carnosine's ability to reduce the formation of altered proteins (typically adducts of methylglyoxal) and enhance proteolysis of aberrant polypeptides is indicative of its influence on proteostasis. Furthermore these dual actions might provide a rationale for the use of carnosine in the treatment or prevention of diverse age-related conditions where energy metabolism or proteostasis are compromised. These include cancer, Alzheimer's disease, Parkinson's disease and the complications of type-2 diabetes (nephropathy, cataracts, stroke and pain), which might all benefit from knowledge of carnosine's mode of action on human cells. © 2013 Hipkiss et al.; licensee Chemistry Central Ltd.
Resumo:
Environmental perturbations during early mammalian development can affect aspects of offspring growth and cardiovascular health. We have demonstrated previously that maternal gestational dietary protein restriction in mice significantly elevated adult offspring systolic blood pressure. Therefore, the present study investigates the key mechanisms of blood pressure regulation in these mice. Following mating, female MF-1 mice were assigned to either a normal-protein diet (NPD; 18% casein) or an isocaloric low-protein diet throughout gestation (LPD; 9% casein), or fed the LPD exclusively during the pre-implantation period (3.5d) before returning to the NPD for the remainder of gestation (Emb-LPD). All offspring received standard chow. At 22 weeks, isolated mesenteric arteries from LPD and Emb-LPD males displayed significantly attenuated vasodilatation to isoprenaline (P=0.04 and P=0.025, respectively), when compared with NPD arteries. At 28 weeks, stereological analysis of glomerular number in female left kidneys revealed no significant difference between the groups. Real-time RT-PCR analysis of type 1a angiotensin II receptor, Na /K ATPase transporter subunits and glucocorticoid receptor expression in male and female left kidneys revealed no significant differences between the groups. LPD females displayed elevated serum angiotensin-converting enzyme (ACE) activity (P=0.044), whilst Emb-LPD males had elevated lung ACE activity (P=0.001), when compared with NPD offspring. These data demonstrate that elevated offspring systolic blood pressure following maternal gestational protein undernutrition is associated with impaired arterial vasodilatation in male offspring, elevated serum and lung ACE activity in female and male offspring, respectively, but kidney glomerular number in females and kidney gene expression in male and female offspring appear unaffected. © 2010 The Authors.
Resumo:
This review provides an overview of the biochemistry of thiol redox couples and the significance of thiol redox homeostasis in neurodegenerative disease. The discussion is centred on cysteine/cystine redox balance, the significance of the xc- cystine-glutamate exchanger and the association between protein thiol redox balance and neurodegeneration, with particular reference to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. The role of thiol disulphide oxidoreductases in providing neuroprotection is also discussed.
Resumo:
Background: Laparoscopic greater curvature plication (LGCP) is an emerging bariatric procedure that reduces the gastric volume without implantable devices or gastrectomy. The aim of this study was to explore changes in glucose homeostasis, postprandial triglyceridemia, and meal-stimulated secretion of selected gut hormones [glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), ghrelin, and obestatin] in patients with type 2 diabetes mellitus (T2DM) at 1 and 6 months after the procedure. Methods: Thirteen morbidly obese T2DM women (mean age, 53.2 ± 8.76 years; body mass index, 40.1 ± 4.59 kg/m2) were prospectively investigated before the LGCP and at 1- and 6-month follow-up. At these time points, all study patients underwent a standardized liquid mixed-meal test, and blood was sampled for assessment of plasma levels of glucose, insulin, C-peptide, triglycerides, GIP, GLP-1, ghrelin, and obestatin. Results: All patients had significant weight loss both at 1 and 6 months after the LGCP (p≤0.002), with mean percent excess weight loss (%EWL) reaching 29.7 ;plusmn2.9 % at the 6-month follow-up. Fasting hyperglycemia and hyperinsulinemia improved significantly at 6 months after the LGCP (p<0.05), with parallel improvement in insulin sensitivity and HbA1c levels (p<0.0001). Meal-induced glucose plasma levels were significantly lower at 6 months after the LGCP (p<0.0001), and postprandial triglyceridemia was also ameliorated at the 6-month follow-up (p<0.001). Postprandial GIP plasma levels were significantly increased both at 1 and 6 months after the LGCP (p<0.0001), whereas the overall meal-induced GLP-1 response was not significantly changed after the procedure (p ;gt0.05). Postprandial ghrelin plasma levels decreased at 1 and 6 months after the LGCP (p<0.0001) with no significant changes in circulating obestatin levels. Conclusion: During the initial 6-month postoperative period, LGCP induces significant weight loss and improves the metabolic profile of morbidly obese T2DM patients, while it also decreases circulating postprandial ghrelin levels and increases the meal-induced GIP response. © 2013 Springer Science+Business Media New York.
Resumo:
AMS Subj. Classification: 62P10, 62H30, 68T01
Resumo:
Findings on growth regulating activities of the end-product of lipid peroxidation 4-hydroxy-2-nonenal (HNE), which acts as a “second messenger of free radicals”, overlapped with the development of antibodies specific for the aldehyde-protein adducts. These led to qualitative immunochemical determinations of the HNE presence in various pathophysiological processes and to the change of consideration of the aldehyde’s bioactivities from toxicity into cell signalling. Moreover, findings of the HNE-protein adduct in various organs under physiological circumstances support the concept of “oxidative homeostasis”, which implies that oxidative stress and lipid peroxidation are not only pathological but also physiological processes. Reactive aldehydes, at least HNE, could play important role in oxidative homeostasis, while complementary research approaches might reveal the relevance of the aldehydic-protein adducts as major biomarkers of oxidative stress, lipid peroxidation and oxidative homeostasis. Aiming to join efforts in such research activities researchers interacting through the International 4-Hydroxynonenal Club acting within the SFRR-International and through networking projects of the system of the European Cooperation in Science and Technology (COST) carried validation of the methods for lipid peroxidation and further developed the genuine 4-HNE-His ELISA founding quantitative and qualitative methods for detection of 4-HNE-His adducts as valuable tool to study oxidative stress and lipid peroxidation in cell cultures, various organs and tissues and eventually for human plasma and serum analyses [1]. Reference: 1. Weber, Daniela. Lidija, Milkovic. Measurement of HNE-protein adducts in human plasma and serum by ELISA—Comparison of two primary antibodies. Redox Biol. 2013. 226-233.
Resumo:
Structure, energetics and reactions of ions in the gas phase can be revealed by mass spectrometry techniques coupled to ions activation methods. Ions can gain enough energy for dissociation by absorbing IR light photons introduced by an IR laser to the mass spectrometer. Also collisions with a neutral molecule can increase the internal energy of ions and provide the dissociation threshold energy. Infrared multiple photon dissociation (IRMPD) or sustained off-resonance irradiation collision-induced dissociation (SORI-CID) methods are combined with Fourier Transform Ion Cyclotron Resonance (FT-ICR) mass spectrometers where ions can be held at low pressures for a long time. The outcome of ion activation techniques especially when it is compared to the computational methods results is of great importance since it provides useful information about the structure, thermochemistry and reactivity of ions of interest. In this work structure, energetics and reactivity of metal cation complexes with dipeptides are investigated. Effect of metal cation size and charge as well as microsolvation on the structure of these complexes has been studied. Structures of bare and hydrated Na and Ca complexes with isomeric dipeptides AlaGly and GlyAla are characterized by means of IRMPD spectroscopy and computational methods. At the second step unimolecular dissociation reactions of singly charged and doubly charged multimetallic complexes of alkaline earth metal cations with GlyGly are examined by CID method. Also structural features of these complexes are revealed by comparing their IRMPD spectra with calculated IR spectra of possible structures. At last the unimolecular dissociation reactions of Mn complexes are studied. IRMPD spectroscopy along with computational methods is also employed for structural elucidation of Mn complexes. In addition the ion-molecule reactions of Mn complexes with CO and water are explored in the low pressures obtained in the ICR cell.
Resumo:
Peer reviewed
Resumo:
Funding was provided by the Wellcome Trust grant WT081633MA-NCE and Biological Sciences Research Council Grant BB/K001043/1. Prof Fragoso is the recipient of a Post Doctoral Science without Borders grant from the Brazilian National Council for Scientific and Technological Development (CNPq, 237450/2012-7).
Resumo:
Aim: Dysregulated glucose homeostasis is a hallmark of Type 2diabetes. A distinctive feature of ageing is the accumulation ofsenescent cells, defined as cells that have undergone irreversible lossof proliferative capacity. Characteristic of senescent cells is thesenescence-associated secretory phenotype (SASP) involving theproduction of factors which reinforce senescence arrest in neigh-bouring tissue environments. We hypothesise that SASP inducesmetabolic dysfunction in non-senescent cells, impairing glucosemetabolism and propagating insulin resistance. We sought todetermine the effect of SASP on glucose homeostasis in hepatic,adipose and skeletal muscle cell lines. Methods: Human dermal fibroblasts were subjected to a geno-toxic dose of doxorubicin to induce senescence, confirmed using ab-galactosidase assay. Conditioned media containing SASP werecollected post 24h and 48h of inducing senescence and used at20% and 40% concentrations to treat AML-12 hepatocytes, 3T3-L1 adipocytes and C2C12 myocytes for 24h and 48h. Cells andmedia were collected and glucose and lipid concentrations weremeasured before and after the respective incubation periods. Results: Cell media obtained from C2C12 myocytes exposed to40% SASP for 24h and 48h and AML-12 hepatocytes after 48hexhibited significantly higher concentrations of glucose in com-parison to control media (p < 0.0001, p < 0.05) suggesting areduced glucose uptake. Glucose utilisation remained unchanged in3T3-L1 cells. Conclusion: Our data suggest an important role for SASP inaltering glucose homeostasis and identify SASP as a potentialmediator between ageing and the increase in age-related insulinresistance.
Resumo:
A facile spin cast route was developed to convert perpendicularly aligned nanorod assemblies of cadmium chalcogenides into their silver and copper analogues. The assemblies are rapidly cation exchanged without affecting either the individual rod dimensions or collective superlattice order extending over several multilayers.
Resumo:
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants (BFRs) that have been heavily used in consumer products such as furniture foams, plastics, and textiles since the mid-1970’s. BFRs are added to products in order to meet state flammability standards intended to increase indoor safety in the event of a fire. The three commercial PBDE mixtures, Penta-, Octa-, and DecaBDE, have all been banned in the United States, however, limited use of DecaBDE is still permitted. PBDEs were phased out of production and added to the Stockholm Convention due to concerns over their environmental persistence and toxicity. Human exposure to PBDEs occurs primarily through the inadvertent ingestion of contaminated house dust, as well as though dietary sources. Despite the phase-out and discontinued use of PBDEs, human exposure to this class of chemicals is likely to continue for decades due to the continued use of treated products and existing environmental reservoirs of PBDEs. Extensive research over the years has shown that PBDEs disrupt thyroid hormone (TH) levels and neurodevelopmental endpoints in rodent and fish models. Additionally, there is growing epidemiological evidence linking PBDE exposure in humans to altered TH homeostasis and neurodevelopmental impairments in children. Due to the importance of THs throughout gestation, there is a great need to understand the effects of BFRs on the developing fetus. Specifically, the placenta plays a critical role in the transport, metabolism, and delivery of THs to the fetal compartment during pregnancy and is a likely target for BFR bioaccumulation and endocrine disruption. The central hypothesis of this dissertation research is that BFRs disrupt the activity of TH sulfotransferase (SULT) enzymes, thereby altering TH concentrations in the placenta.
In the first aim of this dissertation research, the concentrations of PBDEs and 2,4,6-TBP were measured in a cohort of 102 placenta tissue samples from an ongoing pregnancy cohort in Durham, NC. Methods were developed for the extraction and analysis of the BFR analytes. It was found that 2,4,6-TBP was significantly correlated with all PBDE analytes, indicating that 2,4,6-TBP may share common product applications with PBDEs or that 2,4,6-TBP is a metabolite of PBDE compounds. Additionally, this was the first study to measure 2,4,6-TBP in human placenta tissues.
In the second aim of this dissertation research, the placenta tissue concentrations of THs, as well as the endogenous activity of deiodinase (DI) and TH SULT enzymes were quantified using the same cohort of 102 placenta tissue samples. Enzyme activity was detected in all samples and this was the first study to measure TH DI and SULT activity in human placenta tissues. Enzyme activities and TH concentrations were compared with BFR concentrations measured in Aim 1. There were few statistically significant associations observed for the combined data, however, upon stratifying the data set based on infant sex, additional significant associations were observed. For example, among males, those with the highest concentrations of BDE-99 in placenta had T3 levels 0.80 times those with the lowest concentration of BDE-99 (95% confidence interval (CI): 0.59, 1.07). Whereas females with the highest concentrations of BDE-99 in placenta had T3 levels 1.50 times those with the lowest concentration of BDE-99 (95% CI: 1.10, 2.04). Additionally, all BFR analyte concentrations were higher in the placenta of males versus females and they were significantly higher for 2,4,6-TBP and BDE-209. 3,3’-T2 SULT activity was significantly higher in female placenta tissues, while type 3 DI activity was significantly higher in male placenta tissues. This research is the first to show sex-specific differences in the bioaccumulation of BFRs in human placenta tissue, as well as differences in TH concentrations and endogenous DI and SULT activity. The underlying mechanisms of these observed sex differences warrant further investigation.
In the third aim of this dissertation research, the effects of BFRs were examined in a human choriocarcinoma placenta cell line, BeWo. Michaelis-Menten parameters and inhibition curves were calculated for 2,4,6-TBP, 3-OH BDE-47, and 6-OH BDE-47. 2,4,6-TBP was shown to be the most potent inhibitor of 3,3’-T2 SULT activity with a calculated IC50 value of 11.6 nM. It was also shown that 2,4,6-TBP and 3-OH BDE-47 exhibit mixed inhibition of 3,3’-T2 sulfation in BeWo cell homogenates. Next, a series of cell culture exposure experiments were performed using 1, 6, 12, and 24 hour exposure durations. Once again, 2,4,6-TBP was shown to be the most potent inhibitor of basal 3,3’-T2 SULT activity by significantly decreasing activity at the high and medium dose (1 M and 0.5 M, respectively) at all measured time points. Interestingly, BDE-99 was also shown to inhibit basal 3,3’-T2 SULT activity in BeWo cells following the 24 hour exposure, despite exhibiting no inhibitory effects in the BeWo cell homogenate experiments. This indicates that BDE-99 must act through a pathway other than direct enzyme inhibition. Following exposures, the TH concentrations in the cell culture growth media and mRNA expression of TH-related genes were also examined. There was no observed effect of BFR treatment on these endpoints. Future work should focus on determining the downstream biological effects of TH SULT disruption in placental cells, as well as the underlying mechanisms of action responsible for reductions in basal TH SULT activity following BFR exposure.
This was one of the first studies to measure BFRs in a cohort of placenta tissue samples from the United States and the first study to measure THs, DI activity, and SULT activity in human placenta tissues. This research provides a novel contribution to our growing understanding of the effects of BFRs on TH homeostasis within the human placenta, and provides further evidence for sex-specific differences within this important organ. Future research should continue to investigate the effects of environmental contaminants on TH homeostasis within the placenta, as this represents the most critical and vulnerable stage of human development.