917 resultados para C51 - Model Construction and Estimation
Resumo:
In this paper, the scales of Raven's Progressive Matrices Test, General Scale and Advanced Scale, Series II, for the student population (third cycle of EGB and Polimodal ) in the city of La Plata are presented. Considerations are made as regards both the increase in scores (Flynn effect) observed in relation to the previous scale (1964) and the different mean scores according to two age groups (13-16 and 17-18 years of age) and education mode. The findings enabled inferences related to the significance of the increase, particularly in the case of the higher scores in the population attending a special kind of educational institution.
Resumo:
With full-waveform (FWF) lidar systems becoming increasingly available from different commercial manufacturers, the possibility for extracting physical parameters of the scanned surfaces in an area-wide sense, as addendum to their geometric representation, has risen as well. The mentioned FWF systems digitize the temporal profiles of the transmitted laser pulse and of its backscattered echoes, allowing for a reliable determination of the target distance to the instrument and of physical target quantities by means of radiometric calibration, one of such quantities being the diffuse Lambertian reflectance. The delineation of glaciers is a time-consuming task, commonly performed manually by experts and involving field trips as well as image interpretation of orthophotos, digital terrain models and shaded reliefs. In this study, the diffuse Lambertian reflectance was compared to the glacier outlines mapped by experts. We start the presentation with the workflow for analysis of FWF data, their direct georeferencing and the calculation of the diffuse Lambertian reflectance by radiometric calibration; this workflow is illustrated for a large FWF lidar campaign in the Ötztal Alps (Tyrol, Austria), operated with an Optech ALTM 3100 system. The geometric performance of the presented procedure was evaluated by means of a relative and an absolute accuracy assessment using strip differences and orthophotos, resp. The diffuse Lambertian reflectance was evaluated at two rock glaciers within the mentioned lidar campaign. This feature showed good performance for the delineation of the rock glacier boundaries, especially at their lower parts.
Resumo:
Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.
Resumo:
State-of-the-art process-based models have shown to be applicable to the simulation and prediction of coastal morphodynamics. On annual to decadal temporal scales, these models may show limitations in reproducing complex natural morphological evolution patterns, such as the movement of bars and tidal channels, e.g. the observed decadal migration of the Medem Channel in the Elbe Estuary, German Bight. Here a morphodynamic model is shown to simulate the hydrodynamics and sediment budgets of the domain to some extent, but fails to adequately reproduce the pronounced channel migration, due to the insufficient implementation of bank erosion processes. In order to allow for long-term simulations of the domain, a nudging method has been introduced to update the model-predicted bathymetries with observations. The model-predicted bathymetry is nudged towards true states in annual time steps. Sensitivity analysis of a user-defined correlation length scale, for the definition of the background error covariance matrix during the nudging procedure, suggests that the optimal error correlation length is similar to the grid cell size, here 80-90 m. Additionally, spatially heterogeneous correlation lengths produce more realistic channel depths than do spatially homogeneous correlation lengths. Consecutive application of the nudging method compensates for the (stand-alone) model prediction errors and corrects the channel migration pattern, with a Brier skill score of 0.78. The proposed nudging method in this study serves as an analytical approach to update model predictions towards a predefined 'true' state for the spatiotemporal interpolation of incomplete morphological data in long-term simulations.
Resumo:
The intense activity in the construction sector during the last decade has generated huge volumes of construction and demolition (C&D) waste. In average, Europe has generated around 890 million tonnes of construction and demolition waste per year. Although now the activity has entered in a phase of decline, due to the change of the economic cycle, we don’t have to forget all the problems caused by such waste, or rather, by their management which is still far from achieving the overall target of 70% for C&D waste --excludes soil and stones not containing dangerous substances-- should be recycled in the EU Countries by 2020 (Waste Framework Directive). But in fact, the reality is that only 50% of the C&D waste generated in EU is recycled and 40% of it corresponds to the recycling of soil and stones not containing dangerous substances. Aware of this situation, the European Countries are implementing national policies as well as different measures to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In this aspect, this article gives an overview of the amount of C&D waste generated in European countries, as well as the amount of this waste that is being recycled and the different measures that European countries have applied to solve this situation.
Resumo:
The traditional teaching methods used for training civil engineers are currently being called into question as a result of the new knowledge and skills now required by the labor market. In addition, the European Higher Education Area is requesting that students be given a greater say in their learning. In the subject called Construction and Building Materials at the Civil Engineering School of the Universidad Politécnica de Madrid, a path was set three academic years ago to lead to an improvement in traditional teaching by introducing active methodologies. The innovations are based on cooperative learning, new technologies, and continuous assessment. The writers’ proposal is to offer their experience as a contribution to the debate on how students can be encouraged to acquire the skills currently demanded from a civil engineer, though not overlooking solid, top-quality training. From the outcomes obtained, it can be concluded that using new teaching techniques to supplement a traditional approach provides more opportunities for students to learn while boosting their motivation. In our case, the introduction of these changes has resulted in an increased pass rate of 29% on average, when such a figure is considered in the light of the mean value of passes during the last decade.