999 resultados para Cà da Mosto, Alvise, 1432-1488.
Resumo:
Sequence specific resonance assignments have been obtained for H-1, C-13 and N-15 nuclei of the 21 kDa (188 residues long) glutamine amido transferase subunit of guanosine monophosphate synthetase from Methanocaldococcus jannaschii. From an analysis of H-1 and C-13(alpha), C-13(beta) secondary chemical shifts, (3) JH(N)H(alpha) scalar coupling constants and sequential, short and medium range H-1-H-1 NOEs, it was deduced that the glutamine amido transferase subunit has eleven strands and five helices as the major secondary structural elements in its tertiary structure.
Resumo:
Various 1-acyl-2,4,10-trioxaadamantanes were prepared from the corresponding 1-methoxycarbonyl derivatives, via conversion to the N-acylpiperidine derivatives followed by reaction with a Grignard reagent in refluxing THF. These alpha-keto orthoformates were converted to the corresponding imines with 1-(S)-phenethyl amine (TiCl4/Et3N/toluene/reflux), with the Schiff bases being reduced further with NaBH4 (MeOH/0 degrees C) into the corresponding 1-(S)-phenethyl amines (diastereomeric excess 91:9 by NMR). Hydrogenolysis of the phenethyl group (Pd-C/MeOH) finally led to the 1-(aminoalkyl)trioxaadamantanes, which are chiral C-protected alpha-amino acids, in excellent overall yields. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In 2003, Babin et al. theoretically predicted (J. Appl. Phys. 94:4244, 2003) that fabrication of organic-inorganic hybrid materials would probably be required to implement structures with multiple photonic band gaps. In tune with their prediction, we report synthesis of such an inorganic-organic nanocomposite, comprising Cu4O3-CuO-C thin films that experimentally exhibit the highest (of any known material) number (as many as eleven) of photonic band gaps in the near infrared. On contrary to the report by Wang et al. (Appl. Phys. Lett. 84:1629, 2004) that photonic crystals with multiple stop gaps require highly correlated structural arrangement such as multilayers of variable thicknesses, we demonstrate experimental realization of multiple stop gaps in completely randomized structures comprising inorganic oxide nanocrystals (Cu4O3 and CuO) randomly embedded in a randomly porous carbonaceous matrix. We report one step synthesis of such nanostructured films through the metalorganic chemical vapor deposition technique using a single source metalorganic precursor, Cu-4(deaH)(dea)(oAc)(5) a <...aEuro parts per thousand(CH3)(2)CO. The films displaying multiple (4/9/11) photonic band gaps with equal transmission losses in the infrared are promising materials to find applications as multiple channel photonic band gap based filter for WDM technology.
Resumo:
A steel ball was slid on a steel flat lubricated by molybdenum disulfide (MoS2) particles suspended in hexadecane oil at 150 degrees C. The friction data is compared with that obtained when the ball was slid on the flat sprayed apriori with nominally dry MoS2 particles. The friction in the dry experiment was found to increase with temperature while the friction in wet condition was found to decrease with increasing temperature. Micro-Raman and Fourier transform IR spectroscopy are used to explore the roles of environmental moisture and chemical degradation of oil on the formation of antifriction film on the steel substrate.
Strength of hot pressed ZrB2-SiC composite after exposure to high temperatures (1000-1700 degrees C)
Resumo:
Residual strength (room temperature strength after exposure in air at high temperatures) of hot pressed ZrB2-SiC composites was evaluated as function of SiC contents (10-30 vol%) as well as exposure temperatures for 5 h (1000-1700 degrees C). Multilayer oxide scale structures were found after exposures. The composition and thickness of these multilayered oxide scale structure was dependent on exposure temperature and SiC contents in composites. After exposure to 1000 degrees C for 5 h, the residual strength of ZrB2-SiC composites improved by nearly 60% compared to the as-hot pressed composites with 20 and 30 vol% SiC. On the other hand, the residual strength of these composites remained unchanged after 1500 degrees C for 5 h. A drastic degradation in residual strength was observed in composites with 20 and 30 vol% SiC after exposure to 1700 degrees C for 5 h in ZrB2-SiC. An attempt was made to correlate the microstructural changes and oxide scales with residual strength with respect to variation in SiC content and temperature of expsoure. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper reports the fabrication and characterization of an ultrafast laser written Er-doped chalcogenide glass buried waveguide amplifier; Er-doped GeGaS glass has been synthesized by the vacuum sealed melt quenching technique. Waveguides have been fabricated inside the 4 mm long sample by direct ultrafast laser writing. The total passive fiber-to-fiber insertion loss is 2.58 +/- 0.02 dB at 1600 nm, including a propagation loss of 1.6 +/- 0.3 dB. Active characterization shows a relative gain of 2.524 +/- 0.002 dB/cm and 1.359 +/- 0.005 dB/cm at 1541 nm and 1550 nm respectively, for a pump power of 500 mW at a wavelength of 980 nm. (C) 2012 Optical Society of America
Resumo:
The reaction of the low valent metallocene(II) sources Cp'Ti-2(eta(2)-Me3SiC2SiMe3) (Cp' = eta(5)-cyclopentadienyl, 1a or eta(5)-pentamethylcyclopentadienyl, 1b) with different carbodiimide substrates RN=C=NR' 2-R-R' (R = t-Bu; R' = Et; R = R' = i-Pr; t-Bu; SiMe3; 2,4,6-Me-C6H2 and 2,6-i-Pr-C6H3) was investigated to explore the frontiers of ring strained, unusual four-membered heterometallacycles 5-R. The product complexes show dismantlement, isomerization, or C-C coupling of the applied carbodiimide substrates, respectively, to form unusual mono-, di-, and tetranuclear titanium(III) complexes. A detailed theoretical study revealed that the formation of the unusual complexes can be attributed to the biradicaloid nature of the unusual four-membered heterometallacycles 5-R, which presents an intriguing situation of M-C bonding. The combined experimental and theoretical study highlights the delicate interplay of electronic and steric effects in the stabilization of strained four-membered heterometallacycles, accounting for the isolation of the obtained complexes.
Resumo:
We develop a quadratic C degrees interior penalty method for linear fourth order boundary value problems with essential and natural boundary conditions of the Cahn-Hilliard type. Both a priori and a posteriori error estimates are derived. The performance of the method is illustrated by numerical experiments.
Resumo:
The dilaton action in 3 + 1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional conformal field theories. We find that in even dimensions, by promoting the cutoff to a field, one can get an action for this field which coincides with the Wess-Zumino action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.
Resumo:
A newly implemented G-matrix Fourier transform (GFT) (4,3)D HC(C)CH experiment is presented in conjunction with (4,3)D HCCH to efficiently identify H-1/C-13 sugar spin systems in C-13 labeled nucleic acids. This experiment enables rapid collection of highly resolved relay 4D HC(C)CH spectral information, that is, shift correlations of C-13-H-1 groups separated by two carbon bonds. For RNA, (4,3)D HC(C)CH takes advantage of the comparably favorable 1'- and 3'-CH signal dispersion for complete spin system identification including 5'-CH. The (4,3)D HC(C)CH/HCCH based strategy is exemplified for the 30-nucleotide 3'-untranslated region of the pre-mRNA of human U1A protein.
Resumo:
Backbone alkylation has been shown to result in a dramatic reduction in the conformational space that is sterically accessible to a-amino acid residues in peptides. By extension, the presence of geminal dialkyl substituents at backbone atoms also restricts available conformational space for beta and ? residues. Five peptides containing the achiral beta 2,2-disubstituted beta-amino acid residue, 1-(aminomethyl)cyclohexanecarboxylic acid (beta 2,2Ac6c), have been structurally characterized in crystals by X-ray diffraction. The tripeptide Boc-Aib-beta 2,2Ac6c-Aib-OMe (1) adopts a novel fold stabilized by two intramolecular H-bonds (C11 and C9) of opposite directionality. The tetrapeptide Boc-Aib-beta 2,2Ac6c]2-OMe (2) and pentapeptide Boc-Aib-beta 2,2Ac6c]2-Aib-OMe (3) form short stretches of a hybrid a beta C11 helix stabilized by two and three intramolecular H-bonds, respectively. The structure of the dipeptide Boc-Aib-beta 2,2Ac6c-OMe (5) does not reveal any intramolecular H-bond. The aggregation pattern in the crystal provides an example of an extended conformation of the beta 2,2Ac6c residue, forming a polar sheet like H-bond. The protected derivative Ac-beta 2,2Ac6c-NHMe (4) adopts a locally folded gauche conformation about the C beta?Ca bonds (?=-55.7 degrees). Of the seven examples of beta 2,2Ac6c residues reported here, six adopt gauche conformations, a feature which promotes local folding when incorporated into peptides. A comparison between the conformational properties of beta 2,2Ac6c and beta 3,3Ac6c residues, in peptides, is presented. Backbone torsional parameters of H-bonded a beta/beta a turns are derived from the structures presented in this study and earlier reports.
Resumo:
The toplogical features of a sporadic trifurcated C-H center dot center dot center dot O interaction region, where an oxygen atom acts as an acceptor of three weak hydrogen bonds, has been investigated by experimental and theoretical charge density analysis of ferulic acid. The interaction energy of the asymmetric molecular dimer formed by the trifurcated C-H center dot center dot center dot O motif, based on the multipolar model, is shown to be greater than the corresponding asymmetric O-H center dot center dot center dot O dimer in this crystal structure. Further, the hydrogen bond energies associated with these interaction motifs have been estimated from the local kinetic and potential energy densities at the bond critical points. The trends suggest that the interaction energy of the trifurcated C-H center dot center dot center dot O region is comparable to that of a single O-H center dot center dot center dot O hydrogen bond.
Resumo:
We present a detailed study on the behavior of vinylcyclopropanes as masked donor acceptor system toward the stereoselective synthesis of Z-alkylidenetetrahydrofurans. Results of bromenium catalyzed indirect activation of C-C bond of vinylcyclopropanes and concomitant cyclization to alkylidenetetrahydrofuran and other heterocycles have been discussed. The stereoselective formation of the Z-isomer is strongly controlled by the extent of destabilization of one of the gauche conformers of the vinylcyclopropane. The ring-opening/cyclization step was found to be stereospecific as in the case of DA cyclopropanes. The activation of the C-C bond leads to a tight-carbocation intermediate, which is evident from the complete retention of the stereochemistry. The retention of configuration has been established by a necessary control experiment that rules out the possibility of a double inversion pathway. The present results serve as direct stereochemical evidence in support of a tight ion-pair intermediate versus the controversial S(N)2 pathway. A 2D potential energy scan has been carried out at B3LYP/6-31G(d) level theory to obtain the relative energies of the conformers. The Z-selectivity observed has been explained on the basis of the relative population of the conformers and modeling the intermediate and transition state involved in the reaction at M06-2x/6-31+G(d) level. Energy profile for the cyclization step was modeled considering various possible pathways through which cyclization can happen. The methodology has been successfully demonstrated on vinylcyclobutanes as well.
Resumo:
Unambiguous evidence for the engagement of CF3 group in N-H center dot center dot center dot F-C hydrogen bond in a low polarity solvent, the first observation of its kind, is reported. The presence of such weak molecular interactions in the solution state is convincingly established by one and two-dimensional H-1, F-19, and natural abundant N-15 NMR spectroscopic studies. The strong and direct evidence is derived by the observation of through-space couplings, such as, (1h)J(FH), (1h)J(FN), and (2h)J(FF), where the spin polarization is transmitted through hydrogen bond. In an interesting example of a molecule containing two CF3 groups getting simultaneously involved in hydrogen bond, where hydrogen bond mediated couplings are not reflected in the NMR spectrum, F-19-F-19 NOESY experiment yielded confirmatory evidence. Significant deviations in the strengths of (1)J(NH), variable temperature, and the solvent induced perturbations yielded additional support. The NMR results are corroborated by both DFT calculations and MD simulations, where the quantitative information on different ways of involvement of fluorine in two and three centered hydrogen bonds, their percentage of occurrences, and geometries have been obtained. The hydrogen bond interaction energies have also been calculated.
Resumo:
Guanylyl cyclase C (GC-C) is a multidomain, membrane-associated receptor guanylyl cyclase. GC-C is primarily expressed in the gastrointestinal tract, where it mediates fluid-ion homeostasis, intestinal inflammation, and cell proliferation in a cGMP-dependent manner, following activation by its ligands guanylin, uroguanylin, or the heat-stable enterotoxin peptide (ST). GC-C is also expressed in neurons, where it plays a role in satiation and attention deficiency/hyperactive behavior. GC-C is glycosylated in the extracellular domain, and differentially glycosylated forms that are resident in the endoplasmic reticulum (130 kDa) and the plasma membrane (145 kDa) bind the ST peptide with equal affinity. When glycosylation of human GC-C was prevented, either by pharmacological intervention or by mutation of all of the 10 predicted glycosylation sites, ST binding and surface localization was abolished. Systematic mutagenesis of each of the 10 sites of glycosylation in GC-C, either singly or in combination, identified two sites that were critical for ligand binding and two that regulated ST-mediated activation. We also show that GC-C is the first identified receptor client of the lectin chaperone vesicular integral membrane protein, VIP36. Interaction with VIP36 is dependent on glycosylation at the same sites that allow GC-C to fold and bind ligand. Because glycosylation of proteins is altered in many diseases and in a tissue-dependent manner, the activity and/or glycan-mediated interactions of GC-C may have a crucial role to play in its functions in different cell types.