501 resultados para Brassica napus
Resumo:
Phytoextraction is an environmental-friendly and cost-effective technology that uses metal hyperaccumulator plants to remove heavy metals from soils. The metals are absorbed by the roots, transported and accumulated in the aerial parts of the plants, which can be harvested and eliminated. The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addition of organic amendments. Pot experiments were performed with soil samples collected from two mining areas in the north of Madrid, where there was an intense mining activity more than 50 years ago. Three species (Thlaspi arvense, Brassica juncea and Atriplex halimus) were grown under controlled conditions in pots filled with contaminated soils mixed with 0 Mg, 30 Mg and 60 Mg per hectare of two different organic amendments: a commercial compost made of pine bark, peat and wood fiber and other made of horse and sheep manure and wood fiber. Plants were harvested at the end of their crop cycle and were digested in order to measure metal concentration (Zn, Cu and Cd) in roots and shoots. Highest plant metal concentration was observed in pots treated with pine bark amendment and with pure soil due to an increase in metal bioavailability with decreasing pH. Also in those treatments the total plant biomass was lower, even some plants could not germinate. On the contrary, there was a lower metal concentration in plant tissues of pots with manure because its higher pH whereas plant growth was significantly larger so there was an incresing amount of metals removed from soil by plants. Comparing the three species results indicate a higher total metal uptake in A. halimus than B. juncea and T. arvense. In conclusion, results show that pH affects metal bioavailability and uptake by hyperaccumulator plants. Addition of organic amendments could be a successful technique for stabilization of metals in contaminated soils.
Resumo:
The main objective of this study was to determine if isozyme systems can be used as markers of genetic deterioration in Brassicaceae seed accessions under different storage conditions. Seed samples of Brassica oleracea, Cardaria draba, Erysimum cheiri, Iberis sempervirens and Rapistrum rugosum were stored for periods of 9 to 30 years at -10°C and 3-4% seed moisture content (long-term or LT conditions) and at 5°C and uncontrolled relative humidity (RH) (short-term or ST conditions). Starch Gel Electrophoresis (SGE) was used to analyse six enzyme systems oriented to determine the genetic deterioration of the accessions studied. The results obtained show that long-term storage conditions (LT) were extremely effective in maintaining the viability of seeds of the five Brassicaceae species studied. The final germination percentages reached by seeds from LT samples ranged from 75 to 100%, while the germination percentages of ST samples (except for B. oleracea) were very low (from 0 to 10%). Similar conclusions were obtained studying the integrity of electrophoretic bands for several isozymes. Two enzyme systems were of special interest: malate dehydrogenase and alcohol dehydrogenase.
Resumo:
The aim of this work was to study some hyperaccumulator species that could be useful to decontaminate mine soils and also to investigate the bioavailability and uptake of these metals by plants with the addition of organic amendments. Pot experiments were performed with soil samples collected from two mining areas in the north of Madrid, where there was an intense mining activity more than 50 years ago. Three species (Thlaspi arvense, Brassica juncea and Atriplex halimus) were grown under controlled conditions in pots filled with contaminated soils mixed with 0 Mg, 30 Mg and 60 Mg per hectare of two different organic amendments: a commercial compost made of pine bark, peat and wood fiber and other made of horse and sheep manure and wood fiber. Plants were harvested at the end of their crop cycle and were digested in order to measure metal concentration (Zn, Cu and Cd) in roots and shoots. Highest plant metal concentration was observed in pots treated with pine bark amendment and with pure soil due to an increase in metal bioavailability with decreasing pH. Also in those treatments the total plant biomass was lower, even some plants could not germinate. On the contrary, there was a lower metal concentration in plant tissues of pots with manure because its higher pH whereas plant growth was significantly larger so there was an incresing amount of metals removed from soil by plants. Comparing the three species results indicate a higher total metal uptake in A. halimus than B. juncea and T. arvense. In conclusion, results show that pH affects metal bioavailability and uptake by hyperaccumulator plants. Addition of organic amendments could be a successful technique for stabilization of metals in contaminated soils.
Resumo:
Induction of phase 2 detoxication enzymes [e.g., glutathione transferases, epoxide hydrolase, NAD(P)H: quinone reductase, and glucuronosyltransferases] is a powerful strategy for achieving protection against carcinogenesis, mutagenesis, and other forms of toxicity of electrophiles and reactive forms of oxygen. Since consumption of large quantities of fruit and vegetables is associated with a striking reduction in the risk of developing a variety of malignancies, it is of interest that a number of edible plants contain substantial quantities of compounds that regulate mammalian enzymes of xenobiotic metabolism. Thus, edible plants belonging to the family Cruciferae and genus Brassica (e.g., broccoli and cauliflower) contain substantial quantities of isothiocyanates (mostly in the form of their glucosinolate precursors) some of which (e.g., sulforaphane or 4-methylsulfinylbutyl isothiocyanate) are very potent inducers of phase 2 enzymes. Unexpectedly, 3-day-old sprouts of cultivars of certain crucifers including broccoli and cauliflower contain 10–100 times higher levels of glucoraphanin (the glucosinolate of sulforaphane) than do the corresponding mature plants. Glucosinolates and isothiocyanates can be efficiently extracted from plants, without hydrolysis of glucosinolates by myrosinase, by homogenization in a mixture of equal volumes of dimethyl sulfoxide, dimethylformamide, and acetonitrile at −50°C. Extracts of 3-day-old broccoli sprouts (containing either glucoraphanin or sulforaphane as the principal enzyme inducer) were highly effective in reducing the incidence, multiplicity, and rate of development of mammary tumors in dimethylbenz(a)anthracene-treated rats. Notably, sprouts of many broccoli cultivars contain negligible quantities of indole glucosinolates, which predominate in the mature vegetable and may give rise to degradation products (e.g., indole-3-carbinol) that can enhance tumorigenesis. Hence, small quantities of crucifer sprouts may protect against the risk of cancer as effectively as much larger quantities of mature vegetables of the same variety.
Resumo:
RNA polymerase I (pol I) is a nuclear enzyme whose function is to transcribe the duplicated genes encoding the precursor of the three largest ribosomal RNAs. We report a cell-free system from broccoli (Brassica oleracea) inflorescence that supports promoter-dependent RNA pol I transcription in vitro. The transcription system was purified extensively by DEAE-Sepharose, Biorex 70, Sephacryl S300, and Mono Q chromatography. Activities required for pre-rRNA transcription copurified with the polymerase on all four columns, suggesting their association as a complex. Purified fractions programmed transcription initiation from the in vivo start site and utilized the same core promoter sequences required in vivo. The complex was not dissociated in 800 mM KCl and had a molecular mass of nearly 2 MDa based on gel filtration chromatography. The most highly purified fractions contain ≈30 polypeptides, two of which were identified immunologically as RNA polymerase subunits. These data suggest that the occurrence of a holoenzyme complex is probably not unique to the pol II system but may be a general feature of eukaryotic nuclear polymerases.
Resumo:
A rapidly growing area of genome research is the generation of expressed sequence tags (ESTs) in which large numbers of randomly selected cDNA clones are partially sequenced. The collection of ESTs reflects the level and complexity of gene expression in the sampled tissue. To date, the majority of plant ESTs are from nonwoody plants such as Arabidopsis, Brassica, maize, and rice. Here, we present a large-scale production of ESTs from the wood-forming tissues of two poplars, Populus tremula L. × tremuloides Michx. and Populus trichocarpa ‘Trichobel.’ The 5,692 ESTs analyzed represented a total of 3,719 unique transcripts for the two cDNA libraries. Putative functions could be assigned to 2,245 of these transcripts that corresponded to 820 protein functions. Of specific interest to forest biotechnology are the 4% of ESTs involved in various processes of cell wall formation, such as lignin and cellulose synthesis, 5% similar to developmental regulators and members of known signal transduction pathways, and 2% involved in hormone biosynthesis. An additional 12% of the ESTs showed no significant similarity to any other DNA or protein sequences in existing databases. The absence of these sequences from public databases may indicate a specific role for these proteins in wood formation. The cDNA libraries and the accompanying database are valuable resources for forest research directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.
Resumo:
Intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi apparatus and within the Golgi apparatus is facilitated by COP (coat protein)-coated vesicles. Their existence in plant cells has not yet been demonstrated, although the GTP-binding proteins required for coat formation have been identified. We have generated antisera against glutathione-S-transferase-fusion proteins prepared with cDNAs encoding the Arabidopsis Sec21p and Sec23p homologs (AtSec21p and AtSec23p, respectively). The former is a constituent of the COPI vesicle coatomer, and the latter is part of the Sec23/24p dimeric complex of the COPII vesicle coat. Cauliflower (Brassica oleracea) inflorescence homogenates were probed with these antibodies and demonstrated the presence of AtSec21p and AtSec23p antigens in both the cytosol and membrane fractions of the cell. The membrane-associated forms of both antigens can be solubilized by treatments typical for extrinsic proteins. The amounts of the cytosolic antigens relative to the membrane-bound forms increase after cold treatment, and the two antigens belong to different protein complexes with molecular sizes comparable to the corresponding nonplant coat proteins. Sucrose-density-gradient centrifugation of microsomal cell membranes from cauliflower suggests that, although AtSec23p seems to be preferentially associated with ER membranes, AtSec21p appears to be bound to both the ER and the Golgi membranes. This could be in agreement with the notion that COPII vesicles are formed at the ER, whereas COPI vesicles can be made by both Golgi and ER membranes. Both AtSec21p and AtSec23p antigens were detected on membranes equilibrating at sucrose densities equivalent to those typical for in vitro-induced COP vesicles from animal and yeast systems. Therefore, a further purification of the putative plant COP vesicles was undertaken.
Resumo:
Indian mustard (Brassica juncea L.) accumulates high tissue Se concentrations and volatilizes Se in relatively nontoxic forms, such as dimethylselenide. This study showed that the presence of bacteria in the rhizosphere of Indian mustard was necessary to achieve the best rates of plant Se accumulation and volatilization of selenate. Experiments with the antibiotic ampicillin showed that bacteria facilitated 35% of plant Se volatilization and 70% of plant tissue accumulation. These results were confirmed by inoculating axenic plants with rhizosphere bacteria. Compared with axenic controls, plants inoculated with rhizosphere bacteria had 5-fold higher Se concentrations in roots (the site of volatilization) and 4-fold higher rates of Se volatilization. Plants with bacteria contained a heat-labile compound in their root exudate; when this compound was added to the rhizosphere of axenic plants, Se accumulation in plant tissues increased. Plants with bacteria had an increased root surface area compared with axenic plants; the increased area was unlikely to have caused their increased tissue Se accumulation because they did not accumulate more Se when supplied with selenite or selenomethionine. Rhizosphere bacteria also possibly increased plant Se volatilization because they enabled plants to overcome a rate-limiting step in the Se volatilization pathway, i.e. Se accumulation in plant tissues.
Resumo:
In earlier studies, the assimilation of selenate by plants appeared to be limited by its reduction, a step that is thought to be mediated by ATP sulfurylase. Here, the Arabidopsis APS1 gene, encoding a plastidic ATP sulfurylase, was constitutively overexpressed in Indian mustard (Brassica juncea). Compared with that in untransformed plants, the ATP sulfurylase activity was 2- to 2.5-fold higher in shoots and roots of transgenic seedlings, and 1.5- to 2-fold higher in shoots but not roots of selenate-supplied mature ATP-sulfurylase-overexpressing (APS) plants. The APS plants showed increased selenate reduction: x-ray absorption spectroscopy showed that root and shoot tissues of mature APS plants contained mostly organic Se (possibly selenomethionine), whereas wild-type plants accumulated selenate. The APS plants were not able to reduce selenate when shoots were removed immediately before selenate was supplied. In addition, Se accumulation in APS plants was 2- to 3-fold higher in shoots and 1.5-fold higher in roots compared with wild-type plants, and Se tolerance was higher in both seedlings and mature APS plants. These studies show that ATP sulfurylase not only mediates selenate reduction in plants, but is also rate limiting for selenate uptake and assimilation.
Resumo:
An important pathway by which plants detoxify heavy metals is through sequestration with heavy-metal-binding peptides called phytochelatins or their precursor, glutathione. To identify limiting factors for heavy-metal accumulation and tolerance, and to develop transgenic plants with an increased capacity to accumulate and/or tolerate heavy metals, the Escherichia coli gshII gene encoding glutathione synthetase (GS) was overexpressed in the cytosol of Indian mustard (Brassica juncea). The transgenic GS plants accumulated significantly more Cd than the wild type: shoot Cd concentrations were up to 25% higher and total Cd accumulation per shoot was up to 3-fold higher. Moreover, the GS plants showed enhanced tolerance to Cd at both the seedling and mature-plant stages. Cd accumulation and tolerance were correlated with the gshII expression level. Cd-treated GS plants had higher concentrations of glutathione, phytochelatin, thiol, S, and Ca than wild-type plants. We conclude that in the presence of Cd, the GS enzyme is rate limiting for the biosynthesis of glutathione and phytochelatins, and that overexpression of GS offers a promising strategy for the production of plants with superior heavy-metal phytoremediation capacity.
Resumo:
Flock house virus (FHV), a single-stranded RNA insect virus, has previously been reported to cross the kingdom barrier and replicate in barley protoplasts and in inoculated leaves of several plant species [Selling, B. H., Allison, R. F. & Kaesberg, P. (1990) Proc. Natl. Acad. Sci. USA 87, 434–438]. There was no systemic movement of FHV in plants. We tested the ability of movement proteins (MPs) of plant viruses to provide movement functions and cause systemic spread of FHV in plants. We compared the growth of FHV in leaves of nontransgenic and transgenic plants expressing the MP of tobacco mosaic virus or red clover necrotic mosaic virus (RCNMV). Both MPs mobilized cell-to-cell and systemic movement of FHV in Nicotiana benthamiana plants. The yield of FHV was more than 100-fold higher in the inoculated leaves of transgenic plants than in the inoculated leaves of nontransgenic plants. In addition, FHV accumulated in the noninoculated upper leaves of both MP-transgenic plants. RCNMV MP was more efficient in mobilizing FHV to noninoculated upper leaves. We also report here that FHV replicates in inoculated leaves of six additional plant species: alfalfa, Arabidopsis, Brassica, cucumber, maize, and rice. Our results demonstrate that plant viral MPs cause cell-to-cell and long-distance movement of an animal virus in plants and offer approaches to the study of the evolution of viruses and mechanisms governing mRNA trafficking in plants as well as to the development of promising vectors for transient expression of foreign genes in plants.