956 resultados para Blocks bootstrap
Resumo:
Camp Kilda (CK) is regarded as being a quality early childhood center, and has many features you would typically expect to see in settings across Australia. The children are busily engaged in hands-on activity, playing indoors and outdoors, in the sandpit, under the shade of a big mango tree. The learning environment is planned to offer a variety of activities, including dramatic play, climbing equipment, balls, painting, drawing, clay, books, blocks, writing materials, scissors, manipulative materials. The children are free to access all the materials, and they play either individually or in small groups. The teachers encourage and stimulate the children’s learning, through interactions and thoughtful planning. Learning and assessment at CK is embedded within the cultural and social contexts of the children and their community. Children’s learning is made visible through a rich variety of strategies, including recorded observations, work samples, photographs, and other artifacts. Parents are actively encouraged to build on these “stories” of their children. Planning is based around the teachers’ analysis of the information they gather daily as they interact with the children and their families.
Resumo:
Barmah Forest virus (BFV) disease is one of the most widespread mosquito-borne diseases in Australia. The number of outbreaks and the incidence rate of BFV in Australia have attracted growing concerns about the spatio-temporal complexity and underlying risk factors of BFV disease. A large number of notifications has been recorded continuously in Queensland since 1992. Yet, little is known about the spatial and temporal characteristics of the disease. I aim to use notification data to better understand the effects of climatic, demographic, socio-economic and ecological risk factors on the spatial epidemiology of BFV disease transmission, develop predictive risk models and forecast future disease risks under climate change scenarios. Computerised data files of daily notifications of BFV disease and climatic variables in Queensland during 1992-2008 were obtained from Queensland Health and Australian Bureau of Meteorology, respectively. Projections on climate data for years 2025, 2050 and 2100 were obtained from Council of Scientific Industrial Research Organisation. Data on socio-economic, demographic and ecological factors were also obtained from relevant government departments as follows: 1) socio-economic and demographic data from Australian Bureau of Statistics; 2) wetlands data from Department of Environment and Resource Management and 3) tidal readings from Queensland Department of Transport and Main roads. Disease notifications were geocoded and spatial and temporal patterns of disease were investigated using geostatistics. Visualisation of BFV disease incidence rates through mapping reveals the presence of substantial spatio-temporal variation at statistical local areas (SLA) over time. Results reveal high incidence rates of BFV disease along coastal areas compared to the whole area of Queensland. A Mantel-Haenszel Chi-square analysis for trend reveals a statistically significant relationship between BFV disease incidence rates and age groups (ƒÓ2 = 7587, p<0.01). Semi-variogram analysis and smoothed maps created from interpolation techniques indicate that the pattern of spatial autocorrelation was not homogeneous across the state. A cluster analysis was used to detect the hot spots/clusters of BFV disease at a SLA level. Most likely spatial and space-time clusters are detected at the same locations across coastal Queensland (p<0.05). The study demonstrates heterogeneity of disease risk at a SLA level and reveals the spatial and temporal clustering of BFV disease in Queensland. Discriminant analysis was employed to establish a link between wetland classes, climate zones and BFV disease. This is because the importance of wetlands in the transmission of BFV disease remains unclear. The multivariable discriminant modelling analyses demonstrate that wetland types of saline 1, riverine and saline tidal influence were the most significant risk factors for BFV disease in all climate and buffer zones, while lacustrine, palustrine, estuarine and saline 2 and saline 3 wetlands were less important. The model accuracies were 76%, 98% and 100% for BFV risk in subtropical, tropical and temperate climate zones, respectively. This study demonstrates that BFV disease risk varied with wetland class and climate zone. The study suggests that wetlands may act as potential breeding habitats for BFV vectors. Multivariable spatial regression models were applied to assess the impact of spatial climatic, socio-economic and tidal factors on the BFV disease in Queensland. Spatial regression models were developed to account for spatial effects. Spatial regression models generated superior estimates over a traditional regression model. In the spatial regression models, BFV disease incidence shows an inverse relationship with minimum temperature, low tide and distance to coast, and positive relationship with rainfall in coastal areas whereas in whole Queensland the disease shows an inverse relationship with minimum temperature and high tide and positive relationship with rainfall. This study determines the most significant spatial risk factors for BFV disease across Queensland. Empirical models were developed to forecast the future risk of BFV disease outbreaks in coastal Queensland using existing climatic, socio-economic and tidal conditions under climate change scenarios. Logistic regression models were developed using BFV disease outbreak data for the existing period (2000-2008). The most parsimonious model had high sensitivity, specificity and accuracy and this model was used to estimate and forecast BFV disease outbreaks for years 2025, 2050 and 2100 under climate change scenarios for Australia. Important contributions arising from this research are that: (i) it is innovative to identify high-risk coastal areas by creating buffers based on grid-centroid and the use of fine-grained spatial units, i.e., mesh blocks; (ii) a spatial regression method was used to account for spatial dependence and heterogeneity of data in the study area; (iii) it determined a range of potential spatial risk factors for BFV disease; and (iv) it predicted the future risk of BFV disease outbreaks under climate change scenarios in Queensland, Australia. In conclusion, the thesis demonstrates that the distribution of BFV disease exhibits a distinct spatial and temporal variation. Such variation is influenced by a range of spatial risk factors including climatic, demographic, socio-economic, ecological and tidal variables. The thesis demonstrates that spatial regression method can be applied to better understand the transmission dynamics of BFV disease and its risk factors. The research findings show that disease notification data can be integrated with multi-factorial risk factor data to develop build-up models and forecast future potential disease risks under climate change scenarios. This thesis may have implications in BFV disease control and prevention programs in Queensland.
Resumo:
In Exercise in Losing Control (2007) and We Are for You Because We are Against Them (2010), Austrian-born artist Noemi Lakmaier represents Otherness – and, in particular, the experience of Otherness as one of being vulnerable, dependent or visibly different from everyone else in a social situation – by placing first herself then a group of participants in big circular balls she calls ‘Weebles’. In doing so, Lakmaier depicts Otherness as an absurd, ambiguous or illegible element in otherwise everyday ‘living installations’ in which people meet, converse, dine and connect with spectators and passersby on the street. In this paper I analyse the way spectators and passersby respond to the weeble-wearers. Not surprisingly, responses vary – from people who hurry away, to people who try to talk to the weeble-wearer, to people who try to kick or tip the weeble to test its reality. The not-quite-normal situation, and the visibility of the spectators in the situation, asks spectators to rehearse their response to corporeal differences that might be encountered in day-to-day life. As the range of comments, confrontations and struggles show, the situation transfers the ill-at-ease, embarrassed and awkward aspects of dealing with corporeal difference from the disabled performer to the able spectator-become-performer. In this paper, I theorise some of the self-conscious spectatorial responses this sort of work can provoke in terms of an ethics of embarrassment. As the Latin roots of the word attest, embarrassment is born of a block, barrier or obstacle to move smoothly through a social or communicative encounter. In Lakmaier’s work, a range of potential blocks present themselves. The spectators’ responses – from ignoring the weeble, to querying the weeble, to asking visual, verbal or physical questions about how the weeble works, and so on – are ways of managing the interruption and moving forward. They are, I argue, strategies for moving from confusion to comprehension, or from what Emmanuel Levinas would call an encounter with the unknown to back into the horizon of the known, classified and classifiable. They flag the potential for what Levinas would call an ethical face-to-face encounter with the Other in which spectators and passersby may unexpectedly find themselves in a vulnerable position.
Resumo:
Sequencing of mba gene fragments of reference strains of Ureaplasma urealyticum serovars 1, 3, 6, 14, in addition to 33 clinical U. urealyticum isolates is reported. A phylogenetic tree deduced from an alignment of these sequences clearly demonstrates two major clusters (confidence limit 100%), which equate to the parvo and T960 biovars, and five types which we have designated mba 1, 3, 6, 8 and X. These relationships are supported by bootstrap analysis. Polymorphisms within the mba fragment of types mba 1, 3, and 6 were used to define nine subtypes (mba 1a, 1b, 3a, 3b, 3c, 3d, 3e, 6a, and 6b) thus facilitating high resolution typing of U. urealyticum. Inclusion of the reference strains for serovars 1, 3, 6, and 8 in the mba typing scheme showed that the results of this analysis are broadly consistent with currently accepted serotyping. In addition a ure gene fragment from nine of the clinical isolates was amplified and sequenced. Comparisons of the sequences clearly distinguished the two biovars of U. urealyticum; however this fragment was invariant within the parvo biovar. This study has shown that the sequence of the mba can reveal the fine details of the relationships between U. urealyticum isolates and also supports the significant evolutionary gap between the two biovars.
Resumo:
The present paper presents and discusses the use of dierent codes regarding the numerical simulation of a radial-in ow turbine. A radial-in ow turbine test case was selected from published literature [1] and commercial codes (Fluent and CFX) were used to perform the steady-state numerical simulations. An in-house compressible- ow simulation code, Eilmer3 [2] was also adapted in order to make it suitable to perform turbomachinery simulations and preliminary results are presented and discussed. The code itself as well as its adaptation, comprising the addition of terms for the rotating frame of reference, programmable boundary conditions for periodic boundaries and a mixing plane interface between the rotating and non-rotating blocks are also discussed. Several cases with dierent orders of complexity in terms of geometry were considered and the results were compared across the dierent codes. The agreement between these results and published data is also discussed.
Resumo:
Australia’s urban form and planning has shifted from traditional individual dwellings on spacious suburban blocks towards higher density urban consolidation. Despite relatively strong market demand for inner city high density (ICHD) living, there is ongoing need to explore and understand the aspects that make this urban form liveable and sustainable. The purpose of this research is to explore the viewpoints of current ICHD residents to better understand the liveability and sustainability matters that affect their everyday experiences and perceptions of this urban form. Qualitative interviews with 24 ICHD Brisbane (Australia) residents illustrates their perceptions and experiences of liveability and the ways in which it is broadly understood within three main domains and nine key sub-concepts, including: individual dwelling (thermal comfort, natural light and balconies, noise mitigation), building complex (shared space, good neighbour protocols, environmental sustainability) and the community (transport, amenities, sense of community). Focussing on the experience of ICHD residents, this research highlights the ways in which multiple aspects of the immediate living environment, the dwelling, building complex and the community intertwine to provide residents with a liveable space. The results show that urban features that reflect current societal pressure for greater sustainability such as lower energy use are the exact same features sought by ICHD residents in determining their liveability. By highlighting the aspects current ICHD residents value most about their dwellings, buildings and communities, these findings will help inform policy-makers, planners, developers and designers as they create urban spaces and dwellings that are more liveable and sustainable.
Resumo:
Carrion-breeding Sarcophagidae (Diptera) can be used to estimate the post-mortem interval (PMI) in forensic cases. Difficulties with accurate morphological identifications at any life stage and a lack of documented thermobiological profiles have limited their current usefulness of these flies. The molecular-based approach of DNA barcoding, which utilises a 648-bp fragment of the mitochondrial cytochrome oxidase subunit I gene, was previously evaluated in a pilot study for the discrimination between 16 Australian sarcophagids. The current study comprehensively evaluated DNA barcoding on a larger taxon set of 588 adult Australian sarcophagids. A total of 39 of the 84 known Australian species were represented by 580 specimens, which includes 92% of potentially forensically important species. A further eight specimens could not be reliably identified, but included as six unidentifable taxa. A neighbour-joining phylogenetic tree was generated and nucleotide sequence divergences were calculated using the Kimura-two-parameter distance model. All species except Sarcophaga (Fergusonimyia) bancroftorum, known for high morphological variability, were resolved as reciprocally monophyletic (99.2% of cases), with most having bootstrap support of 100. Excluding S. bancroftorum, the mean intraspecific and interspecific variation ranged from 0.00-1.12% and 2.81-11.23%, respectively, allowing for species discrimination. DNA barcoding was therefore validated as a suitable method for the molecular identification of the Australian Sarcophagidae, which will aid in the implementation of this fauna in forensic entomology.
Resumo:
We blend research from human-computer interface (HCI) design with computational based crypto- graphic provable security. We explore the notion of practice-oriented provable security (POPS), moving the focus to a higher level of abstraction (POPS+) for use in providing provable security for security ceremonies involving humans. In doing so we high- light some challenges and paradigm shifts required to achieve meaningful provable security for a protocol which includes a human. We move the focus of security ceremonies from being protocols in their context of use, to the protocols being cryptographic building blocks in a higher level protocol (the security cere- mony), which POPS can be applied to. In order to illustrate the need for our approach, we analyse both a protocol proven secure in theory, and a similar proto- col implemented by a �nancial institution, from both HCI and cryptographic perspectives.
Resumo:
Recent literature has argued that environmental efficiency (EE), which is built on the materials balance (MB) principle, is more suitable than other EE measures in situations where the law of mass conversation regulates production processes. In addition, the MB-based EE method is particularly useful in analysing possible trade-offs between cost and environmental performance. Identifying determinants of MB-based EE can provide useful information to decision makers but there are very few empirical investigations into this issue. This article proposes the use of data envelopment analysis and stochastic frontier analysis techniques to analyse variation in MB-based EE. Specifically, the article develops a stochastic nutrient frontier and nutrient inefficiency model to analyse determinants of MB-based EE. The empirical study applies both techniques to investigate MB-based EE of 96 rice farms in South Korea. The size of land, fertiliser consumption intensity, cost allocative efficiency, and the share of owned land out of total land are found to be correlated with MB-based EE. The results confirm the presence of a trade-off between MB-based EE and cost allocative efficiency and this finding, favouring policy interventions to help farms simultaneously achieve cost efficiency and MP-based EE.
Resumo:
Metal and semiconductor nanowires (NWs) have been widely employed as the building blocks of the nanoelectromechanical systems, which usually acted a resonant beam. Recent researches reported that nanowires are often polycrystalline, which contains grain boundaries (GBs) that transect the whole nanowire into a bamboo like structure. Based on the larger-scale molecular dynamics (MD) simulations, a comprehensive investigation of the influence from grain boundaries on the vibrational properties of doubly clamped Ag NWs is conducted. It is found that, the presence of grain boundary will result in significant energy dissipation during the resonance of polycrystalline NWs, which leads a great deterioration to the quality factor. Further investigation reveals that the energy dissipation is originated from the plastic deformation of polycrystalline NWs in the form of the nucleation of partial dislocations or the generation of micro stacking faults around the GBs and the micro stacking faults is found to keep almost intact during the whole vibration process. Moreover, it is observed that the closer of the grain boundary getting to the regions with the highest strain state, the more energy dissipation will be resulted from the plastic deformation. In addition, either the increase of the number of grain boundaries or the decrease of the distance between the grain boundary and the highest strain state region is observed to induce a lower first resonance frequency. This work sheds lights on the better understanding of the mechanical properties of polycrystalline NWs, which benefits the increasing utilities of NWs in diverse nano-electronic devices.
Resumo:
Complex Internet attacks may come from multiple sources, and target multiple networks and technologies. Nevertheless, Collaborative Intrusion Detection Systems (CIDS) emerges as a promising solution by using information from multiple sources to gain a better understanding of objective and impact of complex Internet attacks. CIDS also help to cope with classical problems of Intrusion Detection Systems (IDS) such as zero-day attacks, high false alarm rates and architectural challenges, e. g., centralized designs exposing the Single-Point-of-Failure. Improved complexity on the other hand gives raise to new exploitation opportunities for adversaries. The contribution of this paper is twofold. We first investigate related research on CIDS to identify the common building blocks and to understand vulnerabilities of the Collaborative Intrusion Detection Framework (CIDF). Second, we focus on the problem of anonymity preservation in a decentralized intrusion detection related message exchange scheme. We use techniques from design theory to provide multi-path peer-to-peer communication scheme where the adversary can not perform better than guessing randomly the originator of an alert message.
Resumo:
The Gulf of California (GoC) has been an important focus site for understanding the spatial and temporal evolution of rifts, with recent studies concluding: 1) rapid crustal rupturing within 10 Myrs; 2) surprisingly abrupt variations in rifting style and magmatism with apparently wide magma-poor and narrow, magmatic rift segments; and 3) that high sedimentation rates may promote switching from wide to narrow rift modes or thermally blanket the crust to enhance rift magmatism. Critical to these conclusions is the onset of rifting at~12 Ma following the cessation of subduction. New field-based volcanostratigraphic and geochronologic studies along the southeastern GoC margin reveal Early Miocene (~25-18 Ma) bimodal volcanism in wide rifting mode (~400 km width), followed by a mid-Miocene (~18-12 Ma) phase of dominantly intermediate composition magmatism in and around the nascent GoC with lavas/domes often emplaced into actively subsiding basins, but contemporaneous with bimodal volcanism regionally. Flat-lying intraplate basaltic lava fields emplaced ~12-10 Ma along the GoC east coast abut tilted blocks of ~20 Ma ignimbrites onshore, and also occur offshore. The reduction in crustal thickness from ~55 to 20 km along the eastern GoC edge must have been largely achieved by 12 Ma. Extension has demonstrably began earlier than previously thought, downplaying rapid rifting and any thermal effects from <6 Ma sedimentation. New age data from onshore indicate significant structurally controlled corridors of magmatism during 18-12 Ma extension in apparently magma-poor rift segments, and this magmatism temporally coincides with the switch from wide to narrow rifting.
Resumo:
Large igneous provinces (LIPs) host the most frequently recurring, largest volume basaltic & silicic eruptions on Earth. The largest volume (>1000 km^3 DRE) and magnitude (>M8) eruptions produce areally extensive (10^4-10^5 km^2) basaltic flow fields and sills, and silicic ignimbrites that are the main LIP building blocks. Basaltic and silicic eruptions have comparable magnitudes, but silicic ignimbrite volumes may be significantly underestimated due to unrecognized and correlated, but voluminous co-ignimbrite ash deposits. Magma composition is no barrier to individual eruption volume. Despite similar magnitudes, flood basaltic and silicic eruptions are very different in eruption mechanism, duration, intensity, vent configuration, and emplacement style. Flood basalts are dominantly effusive Hawaiian-Strombolian, with magma discharge rates of ~10^7-10^8 kg s^-1, and produce dominantly compound pahoehoe flow fields over eruption durations most likely >10 yrs. Most silicic eruptions are moderately to highly explosive, producing cocurrent pyroclastic fountains (rarely Plinian) and suggested to be of short-duration (hours to days) and high intensity (~10^11 kg s^-1). Eruption frequencies are elevated for largemagnitude eruptions of both magma types during LIP formation. In basalt-dominated provinces, large magnitude (>M8) eruptions have much shorter recurrence intervals (10^3-10^4 years) than similar magnitude silicic eruptions (~10^5 years). The huge volumes of magma erupted rapidly in LIPs raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, the paths and rates of ascent from magma reservoirs to the surface, and relative aerosol contributions to the stratosphere from the flood basaltic and rhyolitic eruptions.
Resumo:
We have analyzed a frondelite mineral sample from the Cigana mine, located in the municipality of Conselheiro Pena, a well-known pegmatite in Brazil. In the Cigana pegmatite, secondary phosphates, namely eosphorite, fairfieldite, fluorapatite, frondelite, gormanite, hureaulite, lithiophilite, reddingite and vivianite are common minerals in miarolitic cavities and in massive blocks after triphylite. The chemical formula was determined as (Mn0.68, Fe0.32)(Fe3+)3,72(PO4)3.17(OH)4.99. The structure of the mineral was assessed using vibrational spectroscopy. Bands attributed to the stretching and bending modes of PO4 3- and HOPO3 3- units were identified. The observation of multiple bands supports the concept of symmetry reduction of the phosphate anion in the frondelite structure. Sharp Raman and infrared bands at 3581 cm−1 is assigned to the OH stretching vibration. Broad Raman bands at 3063, 3529 and 3365 cm−1 are attributed to water stretching vibrational modes.
Resumo:
A wet scrubber is a device used in underground coal mines for the exhaust treatment system of various internal combustion engines (generally diesel) primarily as a spark arrestor with a secondary function to remove pollutants from the exhaust gas. A pool of scrubbing liquid (generally water based) is used in conjunction with a Diesel Particulate Filter (DPF). Scrubbers are widely used in underground applications of diesel engines as their exhaust contains high concentration of harmful diesel particulate matter (DPM) and other pollutant gases. Currently the DPFs have to be replaced frequently because moisture output from the wet scrubber blocks the filter media and causes reduced capacity. This paper presents experimental and theoretical studies on the heat and mass transfer mechanisms of the exhaust flow both under and above the water surface, aiming at finding the cause and effects of the moisture reaching the filters and employing a solution to reduce the humidity and DPM output, and to prolong the change-out period of the DPF. By assuming a steady flow condition, heat transfer from the inlet exhaust gas balances energy required for the water evaporation. Hence the exit humidity will decrease with the increase of exit temperature. Experiments on a real scrubber are underway.