967 resultados para Bivariate Lifetime Data
Resumo:
Acoustic sensors play an important role in augmenting the traditional biodiversity monitoring activities carried out by ecologists and conservation biologists. With this ability however comes the burden of analysing large volumes of complex acoustic data. Given the complexity of acoustic sensor data, fully automated analysis for a wide range of species is still a significant challenge. This research investigates the use of citizen scientists to analyse large volumes of environmental acoustic data in order to identify bird species. Specifically, it investigates ways in which the efficiency of a user can be improved through the use of species identification tools and the use of reputation models to predict the accuracy of users with unidentified skill levels. Initial experimental results are reported.
Resumo:
Since manually constructing domain-specific sentiment lexicons is extremely time consuming and it may not even be feasible for domains where linguistic expertise is not available. Research on the automatic construction of domain-specific sentiment lexicons has become a hot topic in recent years. The main contribution of this paper is the illustration of a novel semi-supervised learning method which exploits both term-to-term and document-to-term relations hidden in a corpus for the construction of domain specific sentiment lexicons. More specifically, the proposed two-pass pseudo labeling method combines shallow linguistic parsing and corpusbase statistical learning to make domain-specific sentiment extraction scalable with respect to the sheer volume of opinionated documents archived on the Internet these days. Another novelty of the proposed method is that it can utilize the readily available user-contributed labels of opinionated documents (e.g., the user ratings of product reviews) to bootstrap the performance of sentiment lexicon construction. Our experiments show that the proposed method can generate high quality domain-specific sentiment lexicons as directly assessed by human experts. Moreover, the system generated domain-specific sentiment lexicons can improve polarity prediction tasks at the document level by 2:18% when compared to other well-known baseline methods. Our research opens the door to the development of practical and scalable methods for domain-specific sentiment analysis.
Resumo:
This thesis investigates profiling and differentiating customers through the use of statistical data mining techniques. The business application of our work centres on examining individuals’ seldomly studied yet critical consumption behaviour over an extensive time period within the context of the wireless telecommunication industry; consumption behaviour (as oppose to purchasing behaviour) is behaviour that has been performed so frequently that it become habitual and involves minimal intentions or decision making. Key variables investigated are the activity initialised timestamp and cell tower location as well as the activity type and usage quantity (e.g., voice call with duration in seconds); and the research focuses are on customers’ spatial and temporal usage behaviour. The main methodological emphasis is on the development of clustering models based on Gaussian mixture models (GMMs) which are fitted with the use of the recently developed variational Bayesian (VB) method. VB is an efficient deterministic alternative to the popular but computationally demandingMarkov chainMonte Carlo (MCMC) methods. The standard VBGMMalgorithm is extended by allowing component splitting such that it is robust to initial parameter choices and can automatically and efficiently determine the number of components. The new algorithm we propose allows more effective modelling of individuals’ highly heterogeneous and spiky spatial usage behaviour, or more generally human mobility patterns; the term spiky describes data patterns with large areas of low probability mixed with small areas of high probability. Customers are then characterised and segmented based on the fitted GMM which corresponds to how each of them uses the products/services spatially in their daily lives; this is essentially their likely lifestyle and occupational traits. Other significant research contributions include fitting GMMs using VB to circular data i.e., the temporal usage behaviour, and developing clustering algorithms suitable for high dimensional data based on the use of VB-GMM.
Resumo:
High levels of sitting have been linked with poor health outcomes. Previously a pragmatic MTI accelerometer data cut-point (100 count/min-1) has been used to estimate sitting. Data on the accuracy of this cut-point is unavailable. PURPOSE: To ascertain whether the 100 count/min-1 cut-point accurately isolates sitting from standing activities. METHODS: Participants fitted with an MTI accelerometer were observed performing a range of sitting, standing, light & moderate activities. 1-min epoch MTI data were matched to observed activities, then re-categorized as either sitting or not using the 100 count/min-1 cut-point. Self-report demographics and current physical activity were collected. Generalized estimating equation for repeated measures with a binary logistic model analyses (GEE), corrected for age, gender and BMI, were conducted to ascertain the odds of the MTI data being misclassified. RESULTS: Data were from 26 healthy subjects (8 men; 50% aged <25 years; mean BMI (SD) 22.7(3.8)m/kg2). MTI sitting and standing data mode was 0 count/min-1, with 46% of sitting activities and 21% of standing activities recording 0 count/min-1. The GEE was unable to accurately isolate sitting from standing activities using the 100 count/min-1 cut-point, since all sitting activities were incorrectly predicted as standing (p=0.05). To further explore the sensitivity of MTI data to delineate sitting from standing, the upper 95% confidence interval of the mean for the sitting activities (46 count/min-1) was used to re-categorise the data; this resulted in the GEE correctly classifying 49% of sitting, and 69% of standing activities. Using the 100 count/min-1 cut-point the data were re-categorised into a combined ‘sit/stand’ category and tested against other light activities: 88% of sit/stand and 87% of light activities were accurately predicted. Using Freedson’s moderate cut-point of 1952 count/min-1 the GEE accurately predicted 97% of light vs. 90% of moderate activities. CONCLUSION: The distributions of MTI recorded sitting and standing data overlap considerably, as such the 100 count/min -1 cut-point did not accurately isolate sitting from other static standing activities. The 100 count/min -1 cut-point more accurately predicted sit/stand vs. other movement orientated activities.
Resumo:
Background: Queensland men aged 50 years and older are at high risk for melanoma. Early detection via skin self examination (SSE) (particularly whole-body SSE) followed by presentation to a doctor with suspicious lesions, may decrease morbidity and mortality from melanoma. Prevalence of whole-body SSE (wbSSE) is lower in Queensland older men compared to other population subgroups. With the exception of the present study no previous research has investigated the determinants of wbSSE in older men, or interventions to increase the behaviour in this population. Furthermore, although past SSE intervention studies for other populations have cited health behaviour models in the development of interventions, no study has tested these models in full. The Skin Awareness Study: A recent randomised trial, called the Skin Awareness Study, tested the impact of a video-delivered intervention compared to written materials alone on wbSSE in men aged 50 years or older (n=930). Men were recruited from the general population and interviewed over the telephone at baseline and 13 months. The proportion of men who reported wbSSE rose from 10% to 31% in the control group, and from 11% to 36% in the intervention group. Current research: The current research was a secondary analysis of data collected for the Skin Awareness Study. The objectives were as follows: • To describe how men who did not take up any SSE during the study period differed from those who did take up examining their skin. • To determine whether the intervention program was successful in affecting the constructs of the Health Belief Model it was aimed at (self-efficacy, perceived threat, and outcome expectations); and whether this in turn influenced wbSSE. • To determine whether the Health Action Process Approach (HAPA) was a better predictor of wbSSE behaviour compared to the Health Belief Model (HBM). Methods: For objective 1, men who did not report any past SSE at baseline (n=308) were categorised as having ‘taken up SSE’ (reported SSE at study end) or ‘resisted SSE’ (reported no SSE at study end). Bivariate logistic regression, followed by multivariable regression, investigated the association between participant characteristics measured at baseline and resisting SSE. For objective 2 proxy measures of self-efficacy, perceived threat, and outcome expectations were selected. To determine whether these mediated the effect of the intervention on the outcome, a mediator analysis was performed with all participants who completed interviews at both time points (n=830) following the Baron and Kenny approach, modified for use with structural equation modelling (SEM). For objective 3, control group participants only were included (n=410). Proxy measures of all HBM and HAPA constructs were selected and SEM was used to build up models and test the significance of each hypothesised pathway. A likelihood ratio test compared the HAPA to the HBM. Results: Amongst men who did not report any SSE at baseline, 27% did not take up any SSE by the end of the study. In multivariable analyses, resisting SSE was associated with having more freckly skin (p=0.027); being unsure about the statement ‘if I saw something suspicious on my skin, I’d go to the doctor straight away’ (p=0.028); not intending to perform SSE (p=0.015), having lower SSE self-efficacy (p<0.001), and having no recommendation for SSE from a doctor (p=0.002). In the mediator analysis none of the tested variables mediated the relationship between the intervention and wbSSE. In regards to health behaviour models, the HBM did not predict wbSSE well overall. Only the construct of self-efficacy was a significant predictor of future wbSSE (p=0.001), while neither perceived threat (p=0.584) nor outcome expectations (p=0.220) were. By contrast, when the HAPA constructs were added, all three HBM variables predicted intention to perform SSE, which in turn predicted future behaviour (p=0.015). The HAPA construct of volitional self-efficacy was also associated with wbSSE (p=0.046). The HAPA was a significantly better model compared to the HBM (p<0.001). Limitations: Items selected to measure HBM and HAPA model constructs for objectives 2 and 3 may not have accurately reflected each construct. Conclusions: This research added to the evidence base on how best to target interventions to older men; and on the appropriateness of particular health behaviour models to guide interventions. Findings indicate that to overcome resistance those men with more negative pre-existing attitudes to SSE (not intending to do it, lower initial self-efficacy) may need to be targeted with more intensive interventions in the future. Involving general practitioners in recommending SSE to their patients in this population, alongside disseminating an intervention, may increase its success. Comparison of the HBM and HAPA showed that while two of the three HBM variables examined did not directly predict future wbSSE, all three were associated with intention to self-examine skin. This suggests that in this population, intervening on these variables may increase intention to examine skin, but not necessarily the behaviour itself. Future interventions could potentially focus on increasing both the motivational variables of perceived threat and outcome expectations as well as a combination of both action and volitional self-efficacy; with the aim of increasing intention as well as its translation to taking up and maintaining regular wbSSE.
Resumo:
The aim of this study is to assess the potential use of Bluetooth data for traffic monitoring of arterial road networks. Bluetooth data provides the direct measurement of travel time between pairs of scanners, and intensive research has been reported on this topic. Bluetooth data includes “Duration” data, which represents the time spent by Bluetooth devices to pass through the detection range of Bluetooth scanners. If the scanners are located at signalised intersections, this Duration can be related to intersection performance, and hence represents valuable information for traffic monitoring. However the use of Duration has been ignored in previous analyses. In this study, the Duration data as well as travel time data is analysed to capture the traffic condition of a main arterial route in Brisbane. The data consists of one week of Bluetooth data provided by Brisbane City Council. As well, micro simulation analysis is conducted to further investigate the properties of Duration. The results reveal characteristics of Duration, and address future research needs to utilise this valuable data source.
Resumo:
Traffic Simulation models tend to have their own data input and output formats. In an effort to standardise the input for traffic simulations, we introduce in this paper a set of data marts that aim to serve as a common interface between the necessaary data, stored in dedicated databases, and the swoftware packages, that require the input in a certain format. The data marts are developed based on real world objects (e.g. roads, traffic lights, controllers) rather than abstract models and hence contain all necessary information that can be transformed by the importing software package to their needs. The paper contains a full description of the data marts for network coding, simulation results, and scenario management, which have been discussed with industry partners to ensure sustainability.
Resumo:
In response to the need to leverage private finance and the lack of competition in some parts of the Australian public sector major infrastructure market, especially in very large economic infrastructure procured using Pubic Private Partnerships, the Australian Federal government has demonstrated its desire to attract new sources of in-bound foreign direct investment (FDI) into the Australian construction market. This paper aims to report on progress towards an investigation into the determinants of multinational contractors’ willingness to bid for Australian public sector major infrastructure projects and which is designed to give an improved understanding of matters surrounding FDI into the Australian construction sector. This research deploys Dunning’s eclectic theory for the first time in terms of in-bound FDI by multinational contractors and as head contractors bidding for Australian major infrastructure public sector projects. Elsewhere, the authors have developed Dunning’s principal hypothesis associated with his eclectic framework in order to suit the context of this research and to address a weakness arising in Dunning’s principal hypothesis that is based on a nominal approach to the factors in the eclectic framework and which fail to speak to the relative explanatory power of these factors. In this paper, an approach to reviewing and analysing secondary data, as part of the first stage investigation in this research, is developed and some illustrations given, vis-à-vis the selected sector (roads, bridges and tunnels) in Australia (as the host location) and using one of the selected home countries (Spain). In conclusion, some tentative thoughts are offered in anticipation of the completion of the first stage investigation - in terms of the extent to which this first stage based on secondary data only might suggest the relative importance of the factors in the eclectic framework. It is noted that more robust conclusions are expected following the future planned stages of the research and these stages including primary data are briefly outlined. Finally, and beyond theoretical contributions expected from the overall approach taken to developing and testing Dunning’s framework, other expected contributions concerning research method and practical implications are mentioned.
Resumo:
Researchers are increasingly involved in data-intensive research projects that cut across geographic and disciplinary borders. Quality research now often involves virtual communities of researchers participating in large-scale web-based collaborations, opening their earlystage research to the research community in order to encourage broader participation and accelerate discoveries. The result of such large-scale collaborations has been the production of ever-increasing amounts of data. In short, we are in the midst of a data deluge. Accompanying these developments has been a growing recognition that if the benefits of enhanced access to research are to be realised, it will be necessary to develop the systems and services that enable data to be managed and secured. It has also become apparent that to achieve seamless access to data it is necessary not only to adopt appropriate technical standards, practices and architecture, but also to develop legal frameworks that facilitate access to and use of research data. This chapter provides an overview of the current research landscape in Australia as it relates to the collection, management and sharing of research data. The chapter then explains the Australian legal regimes relevant to data, including copyright, patent, privacy, confidentiality and contract law. Finally, this chapter proposes the infrastructure elements that are required for the proper management of legal interests, ownership rights and rights to access and use data collected or generated by research projects.
Resumo:
This report provides an evaluation of the current available evidence-base for identification and surveillance of product-related injuries in children in Queensland. While the focal population was children in Queensland, the identification of information needs and data sources for product safety surveillance has applicability nationally for all age groups. The report firstly summarises the data needs of product safety regulators regarding product-related injury in children, describing the current sources of information informing product safety policy and practice, and documenting the priority product surveillance areas affecting children which have been a focus over recent years in Queensland. Health data sources in Queensland which have the potential to inform product safety surveillance initiatives were evaluated in terms of their ability to address the information needs of product safety regulators. Patterns in product-related injuries in children were analysed using routinely available health data to identify areas for future intervention, and the patterns in product-related injuries in children identified in health data were compared to those identified by product safety regulators. Recommendations were made for information system improvements and improved access to and utilisation of health data for more proactive approaches to product safety surveillance in the future.
Resumo:
Assurance of learning is a predominant feature in both quality enhancement and assurance in higher education. Assurance of learning is a process that articulates explicit program outcomes and standards, and systematically gathers evidence to determine the extent to which performance matches expectations. Benefits accrue to the institution through the systematic assessment of whole of program goals. Data may be used for continuous improvement, program development, and to inform external accreditation and evaluation bodies. Recent developments, including the introduction of the Tertiary Education and Quality Standards Agency (TEQSA) will require universities to review the methods they use to assure learning outcomes. This project investigates two critical elements of assurance of learning: 1. the mapping of graduate attributes throughout a program; and 2. the collection of assurance of learning data. An audit was conducted with 25 of the 39 Business Schools in Australian universities to identify current methods of mapping graduate attributes and for collecting assurance of learning data across degree programs, as well as a review of the key challenges faced in these areas. Our findings indicate that external drivers like professional body accreditation (for example: Association to Advance Collegiate Schools of Business (AACSB)) and TEQSA are important motivators for assuring learning, and those who were undertaking AACSB accreditation had more robust assurance of learning systems in place. It was reassuring to see that the majority of institutions (96%) had adopted an embedding approach to assuring learning rather than opting for independent standardised testing. The main challenges that were evident were the development of sustainable processes that were not considered a burden to academic staff, and obtainment of academic buy in to the benefits of assuring learning per se rather than assurance of learning being seen as a tick box exercise. This cultural change is the real challenge in assurance of learning practice.
Resumo:
This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling. Some of the core components of data modelling are addressed. A selection of results from the first data modelling activity implemented during the second year (2010; second grade) of a current longitudinal study are reported. Data modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Reported here are children's abilities to identify diverse and complex attributes, sort and classify data in different ways, and create and interpret models to represent their data.
Resumo:
Data flow analysis techniques can be used to help assess threats to data confidentiality and integrity in security critical program code. However, a fundamental weakness of static analysis techniques is that they overestimate the ways in which data may propagate at run time. Discounting large numbers of these false-positive data flow paths wastes an information security evaluator's time and effort. Here we show how to automatically eliminate some false-positive data flow paths by precisely modelling how classified data is blocked by certain expressions in embedded C code. We present a library of detailed data flow models of individual expression elements and an algorithm for introducing these components into conventional data flow graphs. The resulting models can be used to accurately trace byte-level or even bit-level data flow through expressions that are normally treated as atomic. This allows us to identify expressions that safely downgrade their classified inputs and thereby eliminate false-positive data flow paths from the security evaluation process. To validate the approach we have implemented and tested it in an existing data flow analysis toolkit.
Resumo:
Road asset managers are overwhelmed with a high volume of raw data which they need to process and utilise in supporting their decision making. This paper presents a method that processes road-crash data of a whole road network and exposes hidden value inherent in the data by deploying the clustering data mining method. The goal of the method is to partition the road network into a set of groups (classes) based on common data and characterise the class crash types to produce a crash profiles for each cluster. By comparing similar road classes with differing crash types and rates, insight can be gained into these differences that are caused by the particular characteristics of their roads. These differences can be used as evidence in knowledge development and decision support.