991 resultados para Biology, Microbiology|Health Sciences, Pharmacology
Resumo:
Previous studies have implicated Ca2+ fluxes in the control of apoptosis but their exact roles in regulating the process remain obscure. Because Ca2+ can serve as a signal for cytochrome c release from isolated mitochondria, we hypothesized that alterations in intracellular Ca2+ compartmentalization might serve as a release signal in whole cells undergoing apoptosis. Exposure of human PC-3 prostate adenocarcinoma cells to staurosporine or DNA damaging agent (doxorubicin) but not to anti-Fas antibody led to early release of Ca2+ from the endoplasmic reticulum and subsequent accumulation of Ca2+ within mitochondria. Both events were blocked in cells stably transfected with Bcl-2 but were not affected by treatment with the pancaspase inhibitor, zVADfmk. The effects of staurosporine were associated with re-localization of Bax from the cytosol to both endoplasmic reticular and mitochondrial membranes. Neither ER Ca 2+ pool depletion nor mitochondrial Ca2+ uptake were observed in DU-145 cells that possess a frameshift mutation in the Bax gene unless wild-type Bax was restored via adenoviral gene transfer. Cytochrome c release and downstream features of apoptosis were attenuated by treatment with an inhibitor of mitochondria) Ca2+ uptake (RU-360). Although, direct pharmacological ER Ca2+ pool emptying in cells treated with thapsigargin did not lead to early cytochrome c release, pretreatment of cells with staurosporine dramatically sensitized mitochondria to thapsigargin-induced cytochrome c release. Together, our data demonstrate that ER-to-mitochondrial Ca2+ fluxes promote cytochrome c release and apoptosis in cells exposed to some (but not all) pro-apoptosic stimuli. ^
Resumo:
Tumor necrosis factor-related apoptosis-inducing ligand (Apo2L/TRAIL) is a member of the TNF superfamily of cytokines that can induce cell death through engagement of cognate death receptors. Unlike other death receptor ligands, it selectively kills tumor cells while sparing normal cells. Preclinical studies in non-human primates have generated much enthusiasm regarding its therapeutic potential. However, many human cancer cell lines exhibit significant resistance to TRAIL-induced apoptosis, and the molecular mechanisms underling this are controversial. Possible explanations are typically cell-type dependent, but include alterations of receptor expression, enhancement of pro-apoptotic intracellular signaling molecules, and reductions in anti-apoptotic proteins. We show here that the proteasome inhibitor bortezomib (Velcade, PS-341) produces synergistic apoptosis in both bladder and prostate cancer cell lines within 4-6 hours when co-treated with recombinant human TRAIL which is associated with accumulation of p21 and cdk1/2 inhibition. Our data suggest that bortezomib's mechanism of action involves a p21-dependent enhancement of caspase maturation. Furthermore, we found enhanced tumor cell death in in vivo models using athymic nude mice. This is associated with increases in caspase-8 and caspase-3 cleavage as well as significant reductions in microvessel density (MVD) and proliferation. Although TRAIL alone had less of an effect, its biological significance as a single agent requires further investigations. Toxicity studies reveal that the combination of bortezomib and rhTRAIL has fatal consequences that can be circumvented by altering treatment schedules. Based on our findings, we conclude that this strategy has significant therapeutic potential as an anti-cancer agent. ^
Resumo:
15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^
Resumo:
The purpose of this study was to characterize the effects of IL-6 on endothelial cells and to investigate the role of IL-6 in the angiogenesis of ovarian carcinomas. We evaluated human ovarian carcinoma clinical specimens and determined that high expression of IL-6 was associated with increased tumor vascularization. Additionally, endothelial cells derived from the ovary and mesentery expressed the IL-6 receptor (IL-6R), and their stimulation with the exogenous ligand activated downstream signaling molecules and enhanced cell migration. Dual immunohistochemical staining for CD-31 and IL-6R revealed IL-6R expression on human endothelial cells within normal ovary and ovarian carcinomas. To further investigate the possible proangiogenic function of IL-6, Gelfoam sponges containing IL-6 or bFGF were implanted into the subcutis of BALB/c mice. IL-6 containing sponges were vascularized to the same extent as bFGF containing sponges. ^ Chronic stress can adversely affect disease progression. Stimulation of ovarian carcinoma cell lines with concentrations of catecholamines achieved in individuals experiencing chronic stress resulted in a substantial increase in IL-6 production. It was determined that stress mediators regulate IL-6 expression through the β-adrenergic receptor and Src. These data illustrate one mechanism by which chronic stress may influence tumor progression. ^ To investigate whether IL-6 contributes to the angiogenesis of ovarian carcinomas, we isolated low IL-6 expressing clones from the SKOV3.ip1 cell line and transfected them with a plasmid encoding the IL-6 gene. We observed no difference in tumor weight between high and low IL-6 expressing cells. However, while low IL-6 expressing tumors were highly vascularized, high IL-6 expressing tumors appeared hypervascularized. Immunohistochemical analysis revealed that all tumors exhibited robust expression of additional proangiogenic molecules. ^ Collectively, these studies indicate that IL-6 secreted by ovarian cancer cells is a highly proangiogenic cytokine. However, IL-6 is but one of several proangiogenic molecules produced by ovarian cancer, and its inhibition may not be sufficient to inhibit angiogenesis of ovarian carcinoma. The findings presented in this dissertation provide insight into the function of IL-6 as a regulator of angiogenesis. Understanding of the role of proangiogenic molecules such as IL-6 in ovarian carcinoma may have important implications for therapy directed at the vascular component of this disease. ^
Resumo:
The protein p53 binding protein one (53BP1) was discovered in a yeast two-hybrid screen that used the DNA binding domain of p53 as bait. Cloning of full-length 53BP1 showed that this protein contains several protein domains which help make up the protein, which include two tandem BRCT domains and a amino-terminal serine/glutamine cluster domain (SCD). These are two protein domains are often seen in factors that are involved in the cellular response to DNA damage and control of cell cycle checkpoints and we hypothesize that 53BP1 is involved in the cellular response to DNA damage. In support of this hypothesis we observe that 53BP1 is phosphorylated and undergoes a dramatic nuclear re-localization in response to DNA damaging agents. 53BP1 also interacts with several factors that are important in the cellular response to DNA damage, such as the BRCA1 tumor suppressor, ATM and Rad3 related (ATR), and the phosphorylated version of the histone variant H2AX. Mice deficient in 53BP1 display increased sensitivity ionizing radiation (IR), a DNA damaging agent that introduces DNA double strand breaks (DSBs). In addition, 53BP1-deficient mice do not properly undergo the process of class switch recombination (CSR). We also observe that when a defect in 53BP1 is combined with a defect in p53; the resulting mice have an increased rate of formation of spontaneous tumors, notably the formation of B and T lineage lymphomas. The T lineage tumors arise by two distinct mechanisms: one driven by defects in cell cycle regulation and a second driven by defects in the ability to repair DNA DSBs. The B lineage tumors arise by the inability to repair DNA damage and over-expression of the oncogene c-myc. ^ With these observations, we conclude that not only does 53BP1 function in the cellular response to DNA damage, but it also works in concert with p53 to suppress tumor formation. ^
Resumo:
The ultraviolet radiation (UVR) present in sunlight is the primary cause of nonmelanoma skin cancer and has been implicated in the development of cutaneous malignant melanoma. Ultraviolet radiation also suppresses the immune response. In the majority of studies investigating the mechanisms regulating UV-induced immune suppression, UV is used to suppress the induction of immune responses. Equally important, is the ability of UVR to suppress established immune responses, such as the recall reaction in humans, which protects against microbial infections. We established a murine model to help elucidate the immunological mechanisms governing UV-induced suppression of the elicitation of immune responses. 80 kJ/m2 of UVR nine days after sensitization consistently suppressed the elicitation of delayed type hypersensitivity reaction to C. albicans . We found ultraviolet A (320±400 nm) radiation was as effective as solar-simulated ultraviolet A + B (290±400 nm) in suppressing the elicitation of an established immune response. The mechanisms involved in UV-induced suppression of the induction & elicitation of the immune response are similar. For example, mice irradiated with UV after immunization generated antigen-specific T suppressor cells. Injection of monoclonal antibodies to IL-10 or recombinant IL-12 immediately after exposure to UVR blocked immune suppression. Liposomes containing bacteriophage T4N5 to the skin of mice also prevented immune suppression, demonstrating an essential role for ultraviolet-induced DNA damage in the suppression of established immune reactions. ^ In addition to damaging DNA, UV initiates immune suppression through the isomerization of urocanic acid in the epidermis. Here we provide evidence that cis-UCA induces systemic immunosuppression via the serotonin (5-hydroxyyryptamine; 5-HT) receptor. Biochemical and immunological analysis indicate that cis-UCA binds to, and activates, the serotonin receptor. Moreover, serotonin specific antibodies block UV- and/or cis-UCA-induced immune suppression. Our findings identify cis-UCA as novel serotonin receptor ligand and indicate that serotonin receptor engagement can activate immune suppression. Cumulatively, our data suggest that similar immune regulatory mechanisms are activated regardless of whether we expose mice to solar-simulated UV (UVA + UVB) radiation or UVA only, and that ultraviolet radiation activates similar immunologic pathways to suppress the induction or the elicitation of the immune response. ^
Resumo:
The epidermal growth factor receptor (EGFR) and its ligands are overexpressed in many human tumors, including bladder and pancreas, correlating with a more aggressive tumor phenotype and poor patient prognosis. We initiated the present study to characterize the heterogeneity of gefitinib responsiveness in a panel of human bladder and pancreatic cancer cell lines in order to identify the biological characteristics of EGFR-dependent proliferation that could be used to prospectively identify drug-sensitive tumors. A second objective was to elucidate how to best exploit these results by utilizing gefitinib in combination therapy. To these ends, we examined the effects of the EGFR antagonist gefitinib on proliferation and apoptosis in a panel of 18 human bladder cancer cell lines and 9 human pancreatic cancer cell lines. Our data confirmed the existence of marked heterogeneity in Iressa responsiveness with less than half of the cell lines displaying significant growth inhibition by clinically relevant concentrations of the drug. Gefitinib responsiveness was found to be p27 kip1 dependent as DNA synthesis was restored following exposure to p27siRNA. Unfortunately, Iressa responsiveness was not closely linked to surface EGFR or TGF-α expression in the bladder cancer cells, however, cellular TGF-α expression correlated directly with Iressa sensitivity in the pancreatic cancer cell lines. These findings provide the potential for prospectively identifying patients with drug-sensitive tumors. ^ Further studies aimed at exploiting gefitinib-mediated cell cycle effects led us to investigate if gefitinib-mediated TRAIL sensitization correlated with increased p27kip1 accumulation. We observed that increased TRAIL sensitivity following gefitinib exposure was not dependent on p27 kip1 expression. Additional studies initiated to examine the role(s) of Akt and Erk signaling demonstrated that exposure to PI3K or MEK inhibitors significantly enhanced TRAIL-induced apoptosis at concentrations that block target phosphorylation. Furthermore, combinations of TRAIL and the PI3K or MEK inhibitors increased procaspase-8 processing above levels observed with TRAIL alone, indicating that the effects were exerted at the level of caspase-8 activation, considered the earliest step in the TRAIL pathway. ^
Resumo:
Lipopolysaccharide (LPS) and interferon-gamma (IFN) activate macrophages and produce nitric oxide (NO) by initiating the expression of inducible Nitric Oxide Synthase (iNOS). Prolonged LPS/IFN-activation results in the death of macrophage-like RAW 264.7 cells and wild-type murine macrophages. This study was implemented to determine how NO contributes to LPS/IFN-induced macrophage death. The iNOS-specific inhibitor L-NIL protected RAW 264.7 cells from LPS/IFN-activated death, supporting a role for NO in the death of LPS/IFN-activated macrophages. A role for iNOS in cell death was confirmed in iNOS-/- macrophages which were resistant to LPS/IFN-induced death. Cell death was accompanied by nuclear condensation, caspase 3 activation, and PARP cleavage, all of which are hallmarks of apoptosis. The involvement of NO in modulating the stress-activated protein kinase (SAPK)/c-jun N-terminal kinase (JNK) signal transduction pathway was examined as a possible mechanism of LPS/IFN-mediated apoptosis. Western analysis demonstrated that NO modifies the phosphorylation profile of JNK and promotes activation of JNK in the mitochondria in RAW 264.7 cells. Inhibition of JNK with sIRNA significantly reduced cell death in RAW 264.7 cells, indicating the participation of the JNK pathway in LPS/IFN-mediated death. JNK has been demonstrated to induce mitochondrial-mediated apoptosis through modulation of Bcl-2 family members. Therefore, the effect of NO on the balance between pro- and anti-apoptotic Bcl-2 family members was examined. In RAW 264.7 cells, Bim was upregulated and phosphorylated by LPS/IFN independently of NO. However, co-immunoprecipitation studies demonstrated that NO promotes the association of Bax with the BimL splice variant. Examination of Bax phosphorylation by metabolic labeling demonstrated that Bax is basally phosphorylated and becomes dephosphorylated upon LPS/IFN treatment. L-NIL inhibited the dephosphorylation of Bax, indicating that Bax dephosphorylation is NO-dependent. NO also mediated LPS/IFN-induced downregulation of Mcl-1, an anti-apoptotic Bcl-2 family member, as demonstrated by Western blotting for Mcl-1 protein expression. Thus, NO contributes to macrophage apoptosis via a JNK-mediated mechanism involving interaction between Bax and Bim, dephosphorylation of Bax, and downregulation of Mcl-1. ^
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/Apo2L) is a member of the TNF family of cytokines that induces apoptosis in a variety of tumor cells while sparing normal cells. However, many human cancer cell lines display resistance to TRAIL-induced apoptosis and the mechanisms contributing to resistance remain controversial. Previous studies have demonstrated that the dimeric transcription factor Nuclear Factor kappa B (NFκB) is constitutively active in a majority of human pancreatic cancer cell lines and primary tumors, and although its role in tumor progression remains unclear it has been suggested that NFκB contributes to TRAIL resistance. Based on this, I examined the effects of NFκB inhibitors on TRAIL sensitivity in a panel of nine pancreatic cancer cell lines. I show here that inhibitors of NFκB, including two inhibitors of the proteasome (bortezomib (Velcade™, PS-341) and NPI-0052), a small molecule inhibitor of IKK (PS1145), and a novel synthetic diterpene NIK inhibitor (NPI-1342) reverse TRAIL resistance in pancreatic cancer cell lines. Further analysis revealed that the expression of the anti-apoptosic proteins BclXL and XIAP was significantly decreased following exposure to these inhibitors alone and in combination with TRAIL. Additionally, treatment with NPI0052 and TRAIL significantly reduced tumor burden relative to the control tumors in an L3.6pl orthotopic pancreatic xenograft model. This was associated with a significant decrease in proliferation and an increase in caspase 3 and 8 cleavage. Combination therapy employing PS1145 or NPI-1342 in combination with TRAIL also resulted in a significant reduction in tumor burden compared to either agent alone in a Panc1 orthotopic xenograft model. My studies show that combination therapy with inhibitors of NFκB alone and TRAIL is effective in pre-clinical models of pancreatic cancer and suggests that the approach should be evaluated in patients. ^
Resumo:
The use of proteasome inhibitors in cancer has received much attention with the recent FDA approval of bortezomib (Velcade/PS-341). However, in the chronic lymphocytic leukemia (CLL) clinical trial, bortezomib was not as effective as it was in vitro. Accordingly, results in prostate cancer were not remarkable, although regression of lymphadenopathy was observed. This response was also seen in CLL. ^ The proteasome degrades ∼80% of intracellular proteins. Although specific pathways affected by proteasome inhibitors are known, there are still unidentified mechanisms by which they induce apoptosis. The efficacy and mechanism of action of the reversible proteasome inhibitor bortezomib were compared to the novel irreversible inhibitor NPI-0052 in this study, and their mechanisms of action in CLL and prostate cancer were examined. ^ NPI-0052 inhibited proteasome activity and induced apoptosis with more rapid kinetics than bortezomib in CLL. Inhibition of proteasome activity with NPI-0052 was also more durable. Interestingly, bortezomib is cleared from the serum within 15min, which is insufficient time for bortezomib to effectively inhibit the proteasome. However, only 5min exposure was needed for NPI-0052 to produce maximal proteasome inhibition. The data suggest that bortezomib's slow kinetics and reversible nature limit its potential in vivo and the use of NPI-0052 should be considered. ^ In examining the mechanism(s) by which bortezomib and NPI-0052 induce apoptosis in CLL, both were found to elicit the ER stress pathway. A stromal cell co-culture system prevented apoptosis induced by both proteasome inhibitors, suggesting that if such factors in vivo were responsible for reducing bortezomib's efficacy, NPI-0052 would not prove useful either. Finally, Lyn, a Src family kinase (SFK), was decreased in response to bortezomib and NPI-0052 and correlated with apoptosis induction in CLL and prostate cancer. Both proteasome inhibitors specifically targeted Lyn rather than SFKs in general. ^ SFKs are overexpressed in cancer and involved in cell signaling, survival, and metastasis. In prostate cancer cells, both proteasome inhibition and Lyn-silencing significantly inhibited migration. Preliminary evidence also suggested that Lyn downregulation decreases invasion potential. Together, these data suggest that proteasome inhibitors are potential candidates for anti-metastasic therapy and further investigation is warranted for the use of Lyn-targeted therapy to treat metastases. ^
Resumo:
Cytochrome P450s, a superfamily of heme enzymes found in most living organisms. They are responsible for metabolism of many therapeutic drugs, industrial pollutants, carcinogens, and additives to foodstuffs, as well as some endogenous compounds including fatty acids and steroids. First pass drug metabolism studies represent mainly liver and small intestine elimination, and are viewed as the standard to predict therapeutic outcome. However, drug plasma levels determined after administration do not always correlate with therapeutic efficacy of the drug. Therefore, a possible explanation may come by understanding drug metabolism in extrahepatic tissues and/or at the site of drug action. Identification and characterization of novel tissue specific isoforms of P450 generated by alternative splicing of known P450 genes or as yet unidentified genes is essential to predict pharmacological outcome of drugs or the fate of a carcinogen that act at sites remote from liver. ^ Using RT-PCR, brain-specific cytochrome P450s were detected in samples of human autopsy brain. So far, we have identified two human brain variants including P450 2D7 and P450 1A1. We have shown the presence of the P450 1A1 brain specific splice variant in African Americans, Caucasians and Indians albeit different patterns of liver to brain variant ratio were seen distributed throughout each population. Interestingly, the splice variant was detected only in the brain but not in any other tissues from the same individual. Homology modeling was used to compare the variant 3D structure to the liver form structure and differences in the substrate access channels and substrate binding sites were noticed. Automated computational docking was used to predict the metabolic fate of the potent carcinogenic substrate, benzo[a]pyrene. P450 1A1 brain variant showed no binding orientations that could produce the active metabolite, whereas P450 1A1 liver form did reveal orientations capable of generating active carcinogenic product. In vitro P32 labeling studies verified the docking predictions. Therefore, the data support the hypothesis that P450 brain splice variants mediate the metabolism of xenobiotics by mechanisms distinct from the well-studied liver counterparts. ^
Resumo:
The dramatic poor survival of patients diagnosed with glioblastoma multiforme (GBM) is a reflection of the struggles that accompany traditional treatments. Thus, the development of molecular-based targeted therapies represents new windows for intervention. In this study, we hypothesized that we could select peptide-ligands that selectively target GBM based on the idea that the glioma microenvironment may induce or modify the expression of cell surface receptors that could be accessed by circulating peptides. To select the peptides we employed two distinct in vivo screenings. First, a random phage-displayed peptide library was injected into mice bearing intracranial tumors. Phage that bound to tumor were recovered and sequenced. We found that the tumor-derived phage CLSYKGRC, CNKVSTKC and CQSSREKC were recovered with the highest frequencies and used for subsequent targeting experiments. Second, the phage peptide library was injected into mice without tumors and phage were recovered from brain and sequenced. A phage-displayed peptide (CRTIGPSVC) with homology to transferrin (Tf) was selected and injected into brain tumor-bearing mice. Results showed that after 6 hours of circulation, the CLSYKGRC, CNKVSTKC and CQSSREKC-phage selectively targeted GBM vasculature. In contrast, Tf-like phage accumulated outside the tumor blood vessels in the cytoplasm of cells located within GBM, suggesting it was internalized in vivo. However, after short periods of circulation this phage was restricted to the tumor vasculature. Importantly, none of the selected phage targeted normal brain cells in animals bearing intracranial tumors. An affinity column coupled to the CNKVSTKC zpeptide was used to identify receptors from GBM. Using mass-spectrometry Vimentin, a marker of glial malignancy, was identified as a potential receptor. Other studies showed that the Tf-like phage bound selectively to Apo-Tf (iron free), with no binding to Holo-Tf (iron loaded) or to Tf receptor (TfR). However, the binding of Tf-like phage to glioma cells that express TfR increased in the presence of Apo-Tf. Thus, the Tf-like phage could indirectly target TfR using the endogenous Tf pathway. We propose that the novel peptides identified in this study could be conjugated to therapeutic or imaging agents for use GBM. ^
Resumo:
While there is considerable information on the molecular aberrations associated with the development of endometrial cancer, very little is known of changes in gene expression associated with its antecedent premalignant condition, endometrial hyperplasia. In order to address this, we have compared the level of expression of components of the IGF-I signaling pathway in human endometrial hyperplasia to their level of expression in both the normal pre-menopausal endometrium and endometrial carcinoma. We have also characterized the molecular characteristics of endometrial hyperplasia as it occurs in a murine model of hormone-dependent tumorigenesis of the female reproductive tract. ^ There was a significant and selective increase in the expression of the IGF-I Receptor (IGF-IR) in both human hyperplasia and carcinoma as compared to the normal endometrium. The receptor was also activated, as judged by increased tyrosine phosphorylation. In addition, in hyperplasia and carcinoma there is activation of the downstream component Akt. The expression of the PTEN tumor suppressor is decreased in a subset of subjects with hyperplasia and in all of the carcinomas. The simultaneous loss of PTEN expression and increased IGF-IR activation in the hyperplastic endometrium was associated with an increased incidence of endometrial carcinoma elsewhere within the uterus. In the rodent hyperplasia, there was a significant increase in the expression and activation of Akt that appears to be attributable to a marked increase in the expression of IGF-II. ^ Our studies have demonstrated the pathologic proliferation of both the human and rodent endometrium is linked to a marked activation of the Akt pathway. However the cause of this dysregulation is different in the human disease and the animal model. In rodents, hyperplasia is linked to increased expression of one of the ligands of the IGF-IR, IGF-II. In humans the IGF-I receptor itself is upregulated and activated. Additional activation of the Akt pathway via the suppression of PTEN activity, results in conditions that are associated with the marked increase in the probability of developing endometrial cancer. Our data suggests that increased activity of the IGF-I pathway plays the key role in the hyperproliferative state characteristic of endometrial hyperplasia and cancer.^
Resumo:
Lung cancer is a devastating disease with very poor prognosis. The design of better treatments for patients would be greatly aided by mouse models that closely resemble the human disease. The most common type of human lung cancer is adenocarcinoma with frequent metastasis. Unfortunately, current models for this tumor are inadequate due to the absence of metastasis. Based on the molecular findings in human lung cancer and metastatic potential of osteosarcomas in mutant p53 mouse models, I hypothesized that mice with both K-ras and p53 missense mutations might develop metastatic lung adenocarcinomas. Therefore, I incorporated both K-rasLA1 and p53RI72HΔg alleles into mouse lung cells to establish a more faithful model for human lung adenocarcinoma and for translational and mechanistic studies. Mice with both mutations ( K-rasLA1/+ p53R172HΔg/+) developed advanced lung adenocarcinomas with similar histopathology to human tumors. These lung adenocarcinomas were highly aggressive and metastasized to multiple intrathoracic and extrathoracic sites in a pattern similar to that seen in lung cancer patients. This mouse model also showed gender differences in cancer related death and developed pleural mesotheliomas in 23.2% of them. In a preclinical study, the new drug Erlotinib (Tarceva) decreased the number and size of lung lesions in this model. These data demonstrate that this mouse model most closely mimics human metastatic lung adenocarcinoma and provides an invaluable system for translational studies. ^ To screen for important genes for metastasis, gene expression profiles of primary lung adenocarcinomas and metastases were analyzed. Microarray data showed that these two groups were segregated in gene expression and had 79 highly differentially expressed genes (more than 2.5 fold changes and p<0.001). Microarray data of Bub1b, Vimentin and CCAM1 were validated in tumors by quantitative real-time PCR (QPCR). Bub1b , a mitotic checkpoint gene, was overexpressed in metastases and this correlated with more chromosomal abnormalities in metastatic cells. Vimentin, a marker of epithelial-mesenchymal transition (EMT), was also highly expressed in metastases. Interestingly, Twist, a key EMT inducer, was also highly upregulated in metastases by QPCR, and this significantly correlated with the overexpression of Vimentin in the same tumors. These data suggest EMT occurs in lung adenocarcinomas and is a key mechanism for the development of metastasis in K-ras LA1/+ p53R172HΔg/+ mice. Thus, this mouse model provides a unique system to further probe the molecular basis of metastatic lung cancer.^
Resumo:
Signal transducer and activator of transcription 3 (Stat3) is a signaling molecule that transduces signal from cell surface receptors, itself translocates into the nucleus, binds to consensus promoter sequences and activates gene transcription. Here, we showed that Stat3 is constitutively activated in both premalignant tumors (papillomas) and squamous cell carcinomas of mouse skin that is induced by topical treatment with an initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by a tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Additional data demonstrated that epidermal growth factor signaling contributes to the activation of Stat3 in this model. Using mice where Stat3 function is abrogated in keratinocytes via the Cre-LoxP system (K5Cre.Stat3 flox/flox), we demonstrated that Stat3 is required for de novo carcinogenesis since Stat3 deficiency leads to a complete abrogation of skin tumor development induced by DMBA and TPA. We subsequently showed that Stat3 plays a role in both the initiation and promotion stages of carcinogenesis. During initiation, Stat3 functions as an anti-apoptotic molecule for maintaining the survival of DNA-damaged keratinocyte stem cells. During promotion, Stat3 functions as a critical regulator for G1 to S phase cell cycle progression to confer selective clonal expansion of initiated cells into papillomas. On the other hand, using transgenic mice over-expressing a constitutively dimerized form of Stat3 (Stat3C) in keratinocytes (K5.Stat3C), we revealed a role for Stat3 in tumor progression. After treatment with DMBA and TPA, K5.Stat3C transgenic mice developed skin tumors with a shorter latency when 100% bypassed the premalignant stage and became carcinoma in situ. Histological and immunohistochemical analysis revealed these tumors as highly vascularized and poorly differentiated. More strikingly, these tumors exhibited invasion into surrounding mesenchymal tissue, some of which metastasized into lung. The tumor-mesenchymal front was characterized by partial loss of E-cadherin and elevation of vimentin, markers characterizing epithelial-mesenchymal transition. On the other hand, inhibition of Stat3 via a decoy oligonucleotide led to a significant reduction of tumor size in approximately 50% of all papillomas tested. In conclusion, we demonstrated that Stat3 plays a critical in all three stages (initiation, promotion and progression) of skin carcinogenesis, and it may potentially become a good target for cancer prevention and anti-cancer therapy. ^