945 resultados para Benign Reactive Lymphoid Hyperplasia
Resumo:
Objective: The aim was to investigate whether there was an association between periodontitis or tooth loss in a homogeneous group of 60-70-year-old Western European men and either a sustained high or low level of C-reactive protein (CRP).
Material and Methods: Men enrolled in a cohort study of cardiovascular disease in Northern Ireland were screened in 1990-1994 and rescreened in 2001-2004, when a periodontal examination was completed. High-sensitivity CRP was measured from fasting blood samples. There were 806 men with six or more teeth who had either a high level (>3 mg/l) or a lower level of CRP at both time points. Multivariate analysis was carried out using logistic regression with adjustment for possible confounders. Models were constructed with the CRP level as the outcome variable and various measures of periodontal status (low and high threshold periodontitis) or tooth loss as predictor variables. Confounders included in the analysis were known cardiovascular risk factors of age, smoking, diabetes, BMI and socioeconomic status.
Results: There were 67 men who had a high value of CRP (>3 mg/l) and 739 men who had a CRP value =3 mg/l at both time points. The unadjusted odds ratio (OR) for advanced periodontitis to be associated with high CRP was 3.62, p=0.0003. The association was somewhat attenuated but remained significant (OR=2.49, p=0.02) after adjustment for confounders. A high level of tooth loss was also associated with high CRP with an adjusted OR of 2.17, p=0.008. Low threshold periodontitis was not associated with the level of CRP.
Conclusion: There was an association between advanced periodontitis and elevated CRP levels as measured at two time points at a 10-year interval in the 60-70-year-old European males investigated. This association was adjusted for various cardiovascular risk factors. There was also an association between high levels of tooth loss and high CRP in the men studied.
Resumo:
It has become clear over the last 15-20 years that the immediate effect of a wide range of environmental stresses, and of infection, on vascular plants is to increase the formation of reactive oxygen species (ROS) and to impose oxidative stress on the cells. Since 1994, sufficient examples of similar responses in a broad range of marine macroalgae have been described to show that reactive oxygen metabolism also underlies the mechanisms by which seaweeds respond (and become resistant) to stress and infection. Desiccation, freezing, low temperatures, high light, ultraviolet radiation, and heavy metals all tend to result in a gradual and continued buildup of ROS because photosynthesis is inhibited and excess energy results in the formation of singlet oxygen. The response to other stresses (infection or oligosaccharides which signal that infection is occurring, mechanical stress, hyperosmotic shock) is quite different-a more rapid and intense, but short-lived production of ROS, described as an
Resumo:
This paper reports an experimental investigation of converting waste medium density fibreboard (MDF) sawdust into chars and activated carbon using chemical activation and thermal carbonisation processes. The MDF sawdust generated during the production of architectural mouldings was characterised and found to have unique properties in terms of fine particle size and high particle density. It also has a high content of urea formaldehyde resin used as a binder in the manufacturing of MDF board. Direct thermal carbonisation and chemical activation of the sawdust by metal impregnation and acid (phosphoric acid) treatment prior to pyrolysis treatment were carried out. The surface morphology of the raw dust, its chars and activated carbon were examined using scanning electron microscopy (SEM). Adsorptive properties and total pore volume of the materials were also analysed using the BET nitrogen adsorption method. Liquid adsorption of a reactive dye (Levafix Brilliant red E-4BA) by the derived sawdust carbon was investigated in batch isothermal adsorption process and the results compared to adsorption on to a commercial activated carbon (Filtrasorb F400). The MDF sawdust carbon exhibited in general a very low adsorption capacity towards the reactive dye, and physical characterisation of the carbon revealed that the conventional chemical activation and thermal carbonisation process were ineffective in developing a microporous structure in the dust particles. The small size of the powdery dust, the high particle density, and the presence of the urea formaldehyde resin all contributed to the difficulty of developing a proper porous structure during the thermal and chemical activation process. Finally, activation of the dust material in a consolidated form (cylindrical pellet) only achieved very limited improvement in the dye adsorption capacity. This original study, reporting some unexpected outcomes, may serve as a stepping-stone for future investigations of recycle and reuse of the waste MDF sawdust which is becoming an increasing environmental and cost liability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Monkstown Fe0 PRB, Europe’s oldest commercially installed PRB, had been treating trichloroethene (TCE) contaminated groundwater for about 10 years on the Nortel Network site in Northern Ireland when cores were collected in December, 2006. Groundwater data from 2001-2006 indicated that TCE is being remediated to below detection limits as the contaminated groundwater flows through the PRB, Ca and Fe carbonates, crystalline and amorphous FeS, and Fe (oxy)hydroxides precipitates are present in the Fe0 filing material within the PRB. A greater variety of minerals are associated with a 1 cm thick slightly cemented crust at the entrance of the Fe0 section of the reactive vessel and the discontinuous cemented Fe0 material directly below it. Also, a greater presence of microbial communities occurred in the upper portion of the PRB compared to the lower section which might be due to less favourable conditions (i.e. high pH, low oxygen) for microbial growth in the lower section of the PRB. Visual estimation suggests that the Fe0 filings in the effluent section of the PRB have life-span of 10+ years compared to the Fe0 filings in the thin influent section of the PRB which may have a life span of only ~2-5 more years. Multi-tracer tests indicated that preferential pathways have formed in this PRB over the 10 years of operation.
Resumo:
There is a limited amount of information about the effects of mineral precipitates and corrosion on the lifespan and long-term performance of in situ Fe° reactive barriers. The objectives of this paper are (1) to investigate mineral precipitates through an in situ permeable Fe° reactive barrier and (2) to examine the cementation and corrosion of Fe° filings in order to estimate the lifespan of this barrier. This field scale barrier (225' long x 2' wide x 31' deep) has been installed in order to remove uranium from contaminated groundwater at the Y-12 plant site, Oak Ridge, TN. According to XRD and SEM-EDX analysis of core samples recovered from the Fe° portion of the barrier, iron oxyhydroxides were found throughout, while aragonite, siderite, and FeS occurred predominantly in the shallow portion. Additionally, aragonite and FeS were present in up-gradient deeper zone where groundwater first enters the Fe° section of the barrier. After 15 months in the barrier, most of the Fe° filings in the core samples were loose, and a little corrosion of Fe° filings was observed in most of the barrier. However, larger amounts of corrosion (~10-150 µm thick corrosion rinds) occurred on cemented iron particles where groundwater first enters the barrier. Bicarbonate/ carbonate concentrations were high in this section of the barrier. Byproducts of this corrosion, iron oxyhydroxides, were the primary binding material in the cementation. Also, aragonite acted as a binding material to a lesser extent, while amorphous FeS occurred as coatings and infilings. Thin corrosion rinds (2-50 µm thick) were also found on the uncemented individual Fe° filings in the same area of the cementation. If corrosion continues, the estimated lifespan of Fe° filings in the more corroded sections is 5 to 10 years, while the Fe° filings in the rest of the barrier perhaps would last longer than 15 years. The mineral precipitates on the Fe° filing surfaces may hinder this corrosion but they may also decrease reactive surfaces. This research shows that precipitation will vary across a single reactive barrier and that greater corrosion and subsequent cementation of the filings may occur where groundwater first enters the Fe° section of the barrier.
Resumo:
We report the existence of a tip-high reactive oxygen species (ROS) gradient in growing Fucus serratus zygotes, using both 5-(and 6-) chloromethyl-2',7'-dichlorodihydrofluorescein and nitroblue tetrazolium staining to report ROS generation. Suppression of the ROS gradient inhibits polarized zygotic growth; conversely, exogenous ROS generation can redirect zygotic polarization following inhibition of endogenous ROS. Confocal imaging of fluo-4 dextran distributions suggests that the ROS gradient is interdependent on the tip-high [Ca2+](cyt) gradient which is known to be associated with polarized growth. Our data support a model in which localized production of ROS at the rhizoid tip stimulates formation of a localized tip-high [Ca2+](cyt) gradient. Such modulation of intracellular [Ca2+](cyt) signals by ROS is a common motif in many plant and algal systems and this study extends this mechanism to embryogenesis.