900 resultados para Bayesian inference
Resumo:
Background Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities. Methods It is a cross-sectional ecological design using mortality data (years 1996-2003). Units of analysis were the census tracts. A deprivation index was calculated for each census tract. In order to control the variability in estimating the risk of dying we used Bayesian models. We present the RR of the census tract with the highest deprivation vs. the census tract with the lowest deprivation. Results In the case of men, socioeconomic inequalities are observed in total cancer mortality in all cities, except in Castellon, Cordoba and Vigo, while Barcelona (RR = 1.53 95%CI 1.42-1.67), Madrid (RR = 1.57 95%CI 1.49-1.65) and Seville (RR = 1.53 95%CI 1.36-1.74) present the greatest inequalities. In general Barcelona and Madrid, present inequalities for most types of cancer. Among women for total cancer mortality, inequalities have only been found in Barcelona and Zaragoza. The excess number of cancer deaths due to socioeconomic deprivation was 16,413 for men and 1,142 for women. Conclusion This study has analysed inequalities in cancer mortality in small areas of cities in Spain, not only relating this mortality with socioeconomic deprivation, but also calculating the excess mortality which may be attributed to such deprivation. This knowledge is particularly useful to determine which geographical areas in each city need intersectorial policies in order to promote a healthy environment.
Resumo:
Background The 'database search problem', that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method's graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication.
Resumo:
Compositional random vectors are fundamental tools in the Bayesian analysis of categorical data.Many of the issues that are discussed with reference to the statistical analysis of compositionaldata have a natural counterpart in the construction of a Bayesian statistical model for categoricaldata.This note builds on the idea of cross-fertilization of the two areas recommended by Aitchison (1986)in his seminal book on compositional data. Particular emphasis is put on the problem of whatparameterization to use
Resumo:
Low concentrations of elements in geochemical analyses have the peculiarity of beingcompositional data and, for a given level of significance, are likely to be beyond thecapabilities of laboratories to distinguish between minute concentrations and completeabsence, thus preventing laboratories from reporting extremely low concentrations of theanalyte. Instead, what is reported is the detection limit, which is the minimumconcentration that conclusively differentiates between presence and absence of theelement. A spatially distributed exhaustive sample is employed in this study to generateunbiased sub-samples, which are further censored to observe the effect that differentdetection limits and sample sizes have on the inference of population distributionsstarting from geochemical analyses having specimens below detection limit (nondetects).The isometric logratio transformation is used to convert the compositional data in thesimplex to samples in real space, thus allowing the practitioner to properly borrow fromthe large source of statistical techniques valid only in real space. The bootstrap method isused to numerically investigate the reliability of inferring several distributionalparameters employing different forms of imputation for the censored data. The casestudy illustrates that, in general, best results are obtained when imputations are madeusing the distribution best fitting the readings above detection limit and exposes theproblems of other more widely used practices. When the sample is spatially correlated, itis necessary to combine the bootstrap with stochastic simulation
Resumo:
First: A continuous-time version of Kyle's model (Kyle 1985), known as the Back's model (Back 1992), of asset pricing with asymmetric information, is studied. A larger class of price processes and of noise traders' processes are studied. The price process, as in Kyle's model, is allowed to depend on the path of the market order. The process of the noise traders' is an inhomogeneous Lévy process. Solutions are found by the Hamilton-Jacobi-Bellman equations. With the insider being risk-neutral, the price pressure is constant, and there is no equilibirium in the presence of jumps. If the insider is risk-averse, there is no equilibirium in the presence of either jumps or drifts. Also, it is analised when the release time is unknown. A general relation is established between the problem of finding an equilibrium and of enlargement of filtrations. Random announcement time is random is also considered. In such a case the market is not fully efficient and there exists equilibrium if the sensitivity of prices with respect to the global demand is time decreasing according with the distribution of the random time. Second: Power variations. it is considered, the asymptotic behavior of the power variation of processes of the form _integral_0^t u(s-)dS(s), where S_ is an alpha-stable process with index of stability 0&alpha&2 and the integral is an Itô integral. Stable convergence of corresponding fluctuations is established. These results provide statistical tools to infer the process u from discrete observations. Third: A bond market is studied where short rates r(t) evolve as an integral of g(t-s)sigma(s) with respect to W(ds), where g and sigma are deterministic and W is the stochastic Wiener measure. Processes of this type are particular cases of ambit processes. These processes are in general not of the semimartingale kind.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. Recent advances in machine learning offer a novel approach to model spatial distribution of petrophysical properties in complex reservoirs alternative to geostatistics. The approach is based of semisupervised learning, which handles both ?labelled? observed data and ?unlabelled? data, which have no measured value but describe prior knowledge and other relevant data in forms of manifolds in the input space where the modelled property is continuous. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic geological features and describe stochastic variability and non-uniqueness of spatial properties. On the other hand, it is able to capture and preserve key spatial dependencies such as connectivity of high permeability geo-bodies, which is often difficult in contemporary petroleum reservoir studies. Semi-supervised SVR as a data driven algorithm is designed to integrate various kind of conditioning information and learn dependences from it. The semi-supervised SVR model is able to balance signal/noise levels and control the prior belief in available data. In this work, stochastic semi-supervised SVR geomodel is integrated into Bayesian framework to quantify uncertainty of reservoir production with multiple models fitted to past dynamic observations (production history). Multiple history matched models are obtained using stochastic sampling and/or MCMC-based inference algorithms, which evaluate posterior probability distribution. Uncertainty of the model is described by posterior probability of the model parameters that represent key geological properties: spatial correlation size, continuity strength, smoothness/variability of spatial property distribution. The developed approach is illustrated with a fluvial reservoir case. The resulting probabilistic production forecasts are described by uncertainty envelopes. The paper compares the performance of the models with different combinations of unknown parameters and discusses sensitivity issues.
Resumo:
A ubiquitous assessment of swimming velocity (main metric of the performance) is essential for the coach to provide a tailored feedback to the trainee. We present a probabilistic framework for the data-driven estimation of the swimming velocity at every cycle using a low-cost wearable inertial measurement unit (IMU). The statistical validation of the method on 15 swimmers shows that an average relative error of 0.1 ± 9.6% and high correlation with the tethered reference system (rX,Y=0.91 ) is achievable. Besides, a simple tool to analyze the influence of sacrum kinematics on the performance is provided.
Resumo:
The genetic characterization of unbalanced mixed stains remains an important area where improvement is imperative. In fact, with current methods for DNA analysis (Polymerase Chain Reaction with the SGM Plus™ multiplex kit), it is generally not possible to obtain a conventional autosomal DNA profile of the minor contributor if the ratio between the two contributors in a mixture is smaller than 1:10. This is a consequence of the fact that the major contributor's profile 'masks' that of the minor contributor. Besides known remedies to this problem, such as Y-STR analysis, a new compound genetic marker that consists of a Deletion/Insertion Polymorphism (DIP), linked to a Short Tandem Repeat (STR) polymorphism, has recently been developed and proposed elsewhere in literature [1]. The present paper reports on the derivation of an approach for the probabilistic evaluation of DIP-STR profiling results obtained from unbalanced DNA mixtures. The procedure is based on object-oriented Bayesian networks (OOBNs) and uses the likelihood ratio as an expression of the probative value. OOBNs are retained in this paper because they allow one to provide a clear description of the genotypic configuration observed for the mixed stain as well as for the various potential contributors (e.g., victim and suspect). These models also allow one to depict the assumed relevance relationships and perform the necessary probabilistic computations.
Resumo:
The log-ratio methodology makes available powerful tools for analyzing compositionaldata. Nevertheless, the use of this methodology is only possible for those data setswithout null values. Consequently, in those data sets where the zeros are present, aprevious treatment becomes necessary. Last advances in the treatment of compositionalzeros have been centered especially in the zeros of structural nature and in the roundedzeros. These tools do not contemplate the particular case of count compositional datasets with null values. In this work we deal with \count zeros" and we introduce atreatment based on a mixed Bayesian-multiplicative estimation. We use the Dirichletprobability distribution as a prior and we estimate the posterior probabilities. Then weapply a multiplicative modi¯cation for the non-zero values. We present a case studywhere this new methodology is applied.Key words: count data, multiplicative replacement, composition, log-ratio analysis
Resumo:
BACKGROUND The objective of this research was to evaluate data from a randomized clinical trial that tested injectable diacetylmorphine (DAM) and oral methadone (MMT) for substitution treatment, using a multi-domain dichotomous index, with a Bayesian approach. METHODS Sixty two long-term, socially-excluded heroin injectors, not benefiting from available treatments were randomized to receive either DAM or MMT for 9 months in Granada, Spain. Completers were 44 and data at the end of the study period was obtained for 50. Participants were determined to be responders or non responders using a multi-domain outcome index accounting for their physical and mental health and psychosocial integration, used in a previous trial. Data was analyzed with Bayesian methods, using information from a similar study conducted in The Netherlands to select a priori distributions. On adding the data from the present study to update the a priori information, the distribution of the difference in response rates were obtained and used to build credibility intervals and relevant probability computations. RESULTS In the experimental group (n = 27), the rate of responders to treatment was 70.4% (95% CI 53.287.6), and in the control group (n = 23), it was 34.8% (95% CI 15.354.3). The probability of success in the experimental group using the a posteriori distributions was higher after a proper sensitivity analysis. Almost the whole distribution of the rates difference (the one for diacetylmorphine minus methadone) was located to the right of the zero, indicating the superiority of the experimental treatment. CONCLUSION The present analysis suggests a clinical superiority of injectable diacetylmorphine compared to oral methadone in the treatment of severely affected heroin injectors not benefiting sufficiently from the available treatments. TRIAL REGISTRATION Current Controlled Trials ISRCTN52023186.
Resumo:
Calculating explicit closed form solutions of Cournot models where firms have private information about their costs is, in general, very cumbersome. Most authors consider therefore linear demands and constant marginal costs. However, within this framework, the nonnegativity constraint on prices (and quantities) has been ignored or not properly dealt with and the correct calculation of all Bayesian Nash equilibria is more complicated than expected. Moreover, multiple symmetric and interior Bayesianf equilibria may exist for an open set of parameters. The reason for this is that linear demand is not really linear, since there is a kink at zero price: the general ''linear'' inverse demand function is P (Q) = max{a - bQ, 0} rather than P (Q) = a - bQ.
Resumo:
Ground-penetrating radar (GPR) has the potential to provide valuable information on hydrological properties of the vadose zone because of their strong sensitivity to soil water content. In particular, recent evidence has suggested that the stochastic inversion of crosshole GPR data within a coupled geophysical-hydrological framework may allow for effective estimation of subsurface van-Genuchten-Mualem (VGM) parameters and their corresponding uncertainties. An important and still unresolved issue, however, is how to best integrate GPR data into a stochastic inversion in order to estimate the VGM parameters and their uncertainties, thus improving hydrological predictions. Recognizing the importance of this issue, the aim of the research presented in this thesis was to first introduce a fully Bayesian inversion called Markov-chain-Monte-carlo (MCMC) strategy to perform the stochastic inversion of steady-state GPR data to estimate the VGM parameters and their uncertainties. Within this study, the choice of the prior parameter probability distributions from which potential model configurations are drawn and tested against observed data was also investigated. Analysis of both synthetic and field data collected at the Eggborough (UK) site indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when these data are combined with a realistic, informative prior. A subsequent study explore in detail the dynamic infiltration case, specifically to what extent time-lapse ZOP GPR data, collected during a forced infiltration experiment at the Arrenaes field site (Denmark), can help to quantify VGM parameters and their uncertainties using the MCMC inversion strategy. The findings indicate that the stochastic inversion of time-lapse GPR data does indeed allow for a substantial refinement in the inferred posterior VGM parameter distributions. In turn, this significantly improves knowledge of the hydraulic properties, which are required to predict hydraulic behaviour. Finally, another aspect that needed to be addressed involved the comparison of time-lapse GPR data collected under different infiltration conditions (i.e., natural loading and forced infiltration conditions) to estimate the VGM parameters using the MCMC inversion strategy. The results show that for the synthetic example, considering data collected during a forced infiltration test helps to better refine soil hydraulic properties compared to data collected under natural infiltration conditions. When investigating data collected at the Arrenaes field site, further complications arised due to model error and showed the importance of also including a rigorous analysis of the propagation of model error with time and depth when considering time-lapse data. Although the efforts in this thesis were focused on GPR data, the corresponding findings are likely to have general applicability to other types of geophysical data and field environments. Moreover, the obtained results allow to have confidence for future developments in integration of geophysical data with stochastic inversions to improve the characterization of the unsaturated zone but also reveal important issues linked with stochastic inversions, namely model errors, that should definitely be addressed in future research.