953 resultados para Bacterial Pathogenesis
Resumo:
We performed electrical measurements on sands flushed with bacterial suspensions of varying concentration. The first experiment was conducted with Shewanella putrefaciens (biomass 0â??0.5 mg/L) and the second with Escherichia coli (biomass 0â??42 mg/L). We measured a biomass-dependent low-frequency (10 Hz) polarization. At cell density 12 mg/L polarization increased (up to 15%). We attribute the decrease in polarization at low cell density to alteration of the mineral-fluid interface due to mineral-cell interactions. The polarization enhancement at higher cell density is possibly a pore throat mechanism resulting from decreased ionic mobility and/or electron transfer due to cell accumulation in pores.
Resumo:
Dendritic cells (DCs) secrete cytokines such as interleukin-23 (IL-23) when stimulated with certain Toll-like receptor (TLR) agonists and infected with pathogens such as P. aeruginosa. IL- 23 is a proinflammatory cytokine that plays a critical role in the proliferation and differentiation of the IL-17 producing Th17- CD4 T helper cells. The lack of efficient cytokine production from antigen-presenting cells, such as DCs, can impact CD4 differentiation and thus impair the immune responses against pathogens. Clearance of some bacterial infections, such as Klebsiella pneumonia and Listeria monocytogenes has been shown to be dependent on the induction of IL-23 and therefore, deregulation of these cytokines as a direct result of virus infection may impede immune responses to secondary infections. Here, an inhibition of TLR ligand or P. aeruginosa-induced IL- 23 expression in Lymphocytic Choriomeningitis Virus (LCMV)-infected bone marrow-derived dendritic cells (BMDCs) has been demonstrated, indicating that an important function of these cells is disrupted during virus/bacterial coinfection. While production of TNF-α was unaffected in LPS stimulated cells, TNF-α was significantly inhibited in bacterium infected cells by LCMV. Type I IFN in LPS or LCMV infected cell was not detected and therefore, ruling out the possibility of cytokine suppression by Type I IFN. The production of IL-10 was high in BMDCs infected with LCMV and stimulated with LPS or bacteria. Analysis of multiple cytokines produced in this coinfection model demonstrated that LCMV infection impacts specific cytokine production upon LPS or bacterium infection, which may be important for bacterial clearance. This data is important for future immunotherapy use in viral/bacterial coinfection scenarios.
Resumo:
Protein TrwC is the conjugative relaxase responsible for DNA processing in plasmid R388 bacterial conjugation. TrwC has two catalytic tyrosines, Y18 and Y26, both able to carry out cleavage reactions using unmodified oligonucleotide substrates. Suicide substrates containing a 30-Sphosphorothiolate linkage at the cleavage site displaced TrwC reaction towards covalent adducts and thereby enabled intermediate steps in relaxase reactions to be investigated. Two distinct covalent TrwC–oligonucleotide complexes could be separated from noncovalently bound protein by SDS–PAGE. As observed by mass spectrometry, one complex contained a single, cleaved oligonucleotide bound to Y18, whereas the other contained two cleaved oligonucleotides, bound to Y18 and Y26. Analysis of the cleavage reaction using suicide substrates and Y18F or Y26F mutants showed that efficient Y26 cleavage only occurs after Y18 cleavage. Strand-transfer reactions carried out with the isolated Y18–DNA complex allowed the assignment of specific roles to each tyrosine. Thus, only Y18 was used for initiation. Y26 was specifically used in the second transesterification that leads to strand transfer, thus catalyzing the termination reaction that occurs in the recipient cell.
Resumo:
Venous thromboembolism (VTE) is a frequent complication in individuals with cancer and is considered to be a cause of substantial mortality. Epidemiological studies identify malignancy as an independent VTE risk factor and show that cancer patients are at increased risk of both initial and recurrent VTE events. The risk due to cancer is compounded by the effects of chemotherapy and other treatments. The pathogenesis of cancer-associated VTE is complex involving multiple interactions between tumours and various components of haemostasis. The development of a systemic hypercoagulable state is considered a key pathogenetic feature and is attributed to tumour expression of tissue factor and other procoagulants, activation of vascular cells by tumour-derived cytokines and adhesive interactions between tumour cells and host cells. An increasing body of evidence indicates that the activation of haemostasis in malignant disease contributes to tumour growth and progression by stimulation of intracellular signalling pathways. The interaction of tissue factor, thrombin and other coagulation factors with protease activated receptor (PAR) proteins expressed by tumour cells and host vascular cells leads to the induction of genes related to the processes of angiogenesis, cell survival and cell adhesion and migration.
Resumo:
Bacterial infection remains a significant problem following total joint replacement. Efforts to prevent recurrent implant infection, including the use of antibiotic-loaded bone cement for implant fixation at the time of revision surgery, are not always successful. In this in vitro study, we investigated whether the addition of chitosan to gentamicin-loaded Palacos® R bone cement increased antibiotic release and prevented bacterial adherence and biofilm formation by Staphylococcus spp. clinical isolates. Furthermore, mechanical tests were performed as a function of time post-polymerisation in pseudo-physiological conditions. The addition of chitosan to gentamicin-loaded Palacos® R bone cement significantly decreased gentamicin release and did not increase the efficacy of the bone cement at preventing bacterial colonisation and biofilm formation. Moreover, the mechanical performance of cement containing chitosan was significantly reduced after 28 days of saline degradation with the compressive and bending strengths not in compliance with the minimum requirements as stipulated by the ISO standard for PMMA bone cement. Therefore, incorporating chitosan into gentamicin-loaded Palacos® R bone cement for use in revision surgery has no clinical antimicrobial benefit and the detrimental effect on mechanical properties could adversely affect the longevity of the prosthetic joint.