975 resultados para BACTERIOPHAGE-LAMBDA
Resumo:
This work presents the first integral field spectroscopy of the Homunculus nebula around eta Carinae in the near-infrared spectral region (J band). We confirmed the presence of a hole on the polar region of each lobe, as indicated by previous near-IR long-slit spectra and mid-IR images. The holes can be described as a cylinder of height (i.e. the thickness of the lobe) and diameter of 6.5 and 6.0 x 10(16) cm, respectively. We also mapped the blue-shifted component of He I lambda 10830 seen towards the NW lobe. Contrary to previous works, we suggested that this blue-shifted component is not related to the Paddle but it is indeed in the equatorial disc. We confirmed the claim of N. Smith and showed that the spatial extent of the Little Homunculus matches remarkably well the radio continuum emission at 3 cm, indicating that the Little Homunculus can be regarded as a small H II region. Therefore, we used the optically thin 1.3 mm radio flux to derive a lower limit for the number of Lyman-continuum photons of the central source in eta Car. In the context of a binary system, and assuming that the ionizing flux comes entirely from the hot companion star, the lower limit for its spectral type and luminosity class ranges from O5.5 III to O7 I. Moreover, we showed that the radio peak at 1.7 arcsec NW from the central star is in the same line-of-sight of the `Sr-filament` but they are obviously spatially separated, while the blue-shifted component of He I lambda 10830 may be related to the radio peak and can be explained by the ultraviolet radiation from the companion star.
Resumo:
A full description of the 5.5-yr low excitation events in. Carinae is presented. We show that they are not as simple and brief as previously thought, but a combination of two components. The first, the slow variation component, is revealed by slow changes in the ionization level of circumstellar matter across the whole cycle and is caused by gradual changes in the wind wind collision shock-cone orientation, angular opening and gaseous content. The second, the collapse component, is restricted to around the minimum, and is due to a temporary global collapse of the wind-wind collision shock. High-energy photons (E > 16 eV) from the companion star are strongly shielded, leaving the Weigelt objects at low-ionization state for more than six months. High-energy phenomena are sensitive only to the collapse, low energy only to the slow variation and intermediate energies to both components. Simple eclipses and mechanisms effective only near periastron (e. g. shell ejection or accretion on to the secondary star) cannot account for the whole 5.5-yr cycle. We find anti-correlated changes in the intensity and the radial velocity of P Cygni absorption profiles in Fe II lambda 6455 and He I lambda 7065 lines, indicating that the former is associated to the primary and the latter to the secondary star. We present a set of light curves representative of the whole spectrum, useful for monitoring the next event (2009 January 11).
Resumo:
The study of Wolf-Rayet stars plays an important role in evolutionary theories of massive stars. Among these objects, similar to 20 per cent are known to be in binary systems and can therefore be used for the mass determination of these stars. Most of these systems are not spatially resolved and spectral lines can be used to constrain the orbital parameters. However, part of the emission may originate in the interaction zone between the stellar winds, modifying the line profiles and thus challenging us to use different models to interpret them. In this work, we analysed the He II lambda 4686 angstrom + C IV lambda 4658 angstrom blended lines of WR 30a (WO4+O5) assuming that part of the emission originate in the wind-wind interaction zone. In fact, this line presents a quiescent base profile, attributed to the WO wind, and a superposed excess, which varies with the orbital phase along the 4.6-d period. Under these assumptions, we were able to fit the excess spectral line profile and central velocity for all phases, except for the longest wavelengths, where a spectral line with constant velocity seems to be present. The fit parameters provide the eccentricity and inclination of the binary orbit, from which it is possible to constrain the stellar masses.
Resumo:
A possible slowing down of the cosmic expansion is investigated through a cosmographic approach. By expanding the luminosity distance to fourth order and fitting the SN Ia data from the most recent compilations (Union, Constitution and Union 2), the marginal likelihood distributions for the deceleration parameter today suggest a recent reduction of the cosmic acceleration and indicate that there is a considerable probability for q(0) > 0. Also in contrast to the prediction of the Lambda CDM model, the cosmographic q(z) reconstruction permits a cosmic expansion history where the cosmic acceleration could already have peaked and be presently slowing down, which would imply that the recent accelerated expansion of the universe is a transient phenomenon. It is also shown that to describe a transient acceleration the luminosity distance needs to be expanded at least to fourth order. The present cosmographic results depend neither on the validity of general relativity nor on the matter-energy contents of the universe.
Resumo:
The abundance of heavy r-elements may provide a better understanding of the r-process, and the determination of several reference r-elements should allow a better determination of a star`s age. The space UV region (lambda < 3000 angstrom) presents a large number of lines of the heavy elements, and in the case of some elements, such as Bi, Pt, Au, detectable lines are not available elsewhere. The extreme ""r-process star"" CS 31082-001 ([Fe/H] = -2.9) was observed in the space UV to determine abundances of the heaviest stable elements, using STIS on board Hubble Space Telescope.
Resumo:
Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a ""Ribbon"" of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within similar to 40 pc. Using interstellar polarization observations toward similar to 30 nearby stars within similar to 90 degrees of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of lambda, beta similar to 263 degrees, 37 degrees (or galactic coordinates of l, b similar to 38 degrees, 23 degrees), with uncertainties of +/- 35 degrees based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33 degrees from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment.
Resumo:
We study the stability regions and families of periodic orbits of two planets locked in a co-orbital configuration. We consider different ratios of planetary masses and orbital eccentricities; we also assume that both planets share the same orbital plane. Initially, we perform numerical simulations over a grid of osculating initial conditions to map the regions of stable/chaotic motion and identify equilibrium solutions. These results are later analysed in more detail using a semi-analytical model. Apart from the well-known quasi-satellite orbits and the classical equilibrium Lagrangian points L(4) and L(5), we also find a new regime of asymmetric periodic solutions. For low eccentricities these are located at (delta lambda, delta pi) = (+/- 60 degrees, -/+ 120 degrees), where delta lambda is the difference in mean longitudes and delta pi is the difference in longitudes of pericentre. The position of these anti-Lagrangian solutions changes with the mass ratio and the orbital eccentricities and are found for eccentricities as high as similar to 0.7. Finally, we also applied a slow mass variation to one of the planets and analysed its effect on an initially asymmetric periodic orbit. We found that the resonant solution is preserved as long as the mass variation is adiabatic, with practically no change in the equilibrium values of the angles.
Resumo:
Clusters of galaxies are the most impressive gravitationally-bound systems in the universe, and their abundance (the cluster mass function) is an important statistic to probe the matter density parameter (Omega(m)) and the amplitude of density fluctuations (sigma(8)). The cluster mass function is usually described in terms of the Press-Schecther (PS) formalism where the primordial density fluctuations are assumed to be a Gaussian random field. In previous works we have proposed a non-Gaussian analytical extension of the PS approach with basis on the q-power law distribution (PL) of the nonextensive kinetic theory. In this paper, by applying the PL distribution to fit the observational mass function data from X-ray highest flux-limited sample (HIFLUGCS), we find a strong degeneracy among the cosmic parameters, sigma(8), Omega(m) and the q parameter from the PL distribution. A joint analysis involving recent observations from baryon acoustic oscillation (BAO) peak and Cosmic Microwave Background (CMB) shift parameter is carried out in order to break these degeneracy and better constrain the physically relevant parameters. The present results suggest that the next generation of cluster surveys will be able to probe the quantities of cosmological interest (sigma(8), Omega(m)) and the underlying cluster physics quantified by the q-parameter.
Resumo:
The kinematic expansion history of the universe is investigated by using the 307 supernovae type Ia from the Union Compilation set. Three simple model parameterizations for the deceleration parameter ( constant, linear and abrupt transition) and two different models that are explicitly parametrized by the cosmic jerk parameter ( constant and variable) are considered. Likelihood and Bayesian analyses are employed to find best fit parameters and compare models among themselves and with the flat Lambda CDM model. Analytical expressions and estimates for the deceleration and cosmic jerk parameters today (q(0) and j(0)) and for the transition redshift (z(t)) between a past phase of cosmic deceleration to a current phase of acceleration are given. All models characterize an accelerated expansion for the universe today and largely indicate that it was decelerating in the past, having a transition redshift around 0.5. The cosmic jerk is not strongly constrained by the present supernovae data. For the most realistic kinematic models the 1 sigma confidence limits imply the following ranges of values: q(0) is an element of [-0.96, -0.46], j(0) is an element of [-3.2,-0.3] and z(t) is an element of [0.36, 0.84], which are compatible with the Lambda CDM predictions, q(0) = -0.57 +/- 0.04, j(0) = -1 and z(t) = 0.71 +/- 0.08. We find that even very simple kinematic models are equally good to describe the data compared to the concordance Lambda CDM model, and that the current observations are not powerful enough to discriminate among all of them.
Resumo:
We propose a new class of accelerating world models unifying the cosmological dark sector (dark matter and dark energy). All the models are described by a simplified version of the Chaplygin gas quartessence cosmology. It is found that even for Omega(k) not equal 0, this quartessence scenario depends only on a pair of parameters which can severely be constrained by the cosmological tests. As an example we perform a joint analysis involving the latest SNe type la data and the recent Sloan Digital Sky Survey measurement of baryon acoustic oscillations. In our analysis we have considered the SNe type la Union sample compiled by Kowalski et al. [M. Kowalski et al., Astrophys. J. 686 (2008) 749, arXiv:0804.4142]. At 95.4% (c.l.), we find for BAD + Union sample, alpha = 0.81(-0.04)(+0.04) and Omega(Q4) = 1.15(-0.17)(+0.16) The best-fit for this simplified quartessence scenario is a spatially closed Universe and its reduced chi(2) is exactly the same of the flat concordance model (Lambda CDM). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Colour-magnitude diagrams (CMDs) of the Small Magellanic Cloud (SMC) star cluster NGC 419, derived from Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) data, reveal a well-delineated secondary clump located below the classical compact red clump typical of intermediate-age populations. We demonstrate that this feature belongs to the cluster itself, rather than to the underlying SMC field. Then, we use synthetic CMDs to show that it corresponds very well to the secondary clump predicted to appear as a result of He-ignition in stars just massive enough to avoid e(-)-degeneracy settling in their H-exhausted cores. The main red clump instead is made of the slightly less massive stars which passed through e(-) degeneracy and ignited He at the tip of the red giant branch. In other words, NGC 419 is the rare snapshot of a cluster while undergoing the fast transition from classical to degenerate H-exhausted cores. At this particular moment of a cluster`s life, the colour distance between the main-sequence turn-off and the red clump(s) depends sensitively on the amount of convective core overshooting, Lambda(c). By coupling measurements of this colour separation with fits to the red clump morphology, we are able to estimate simultaneously the cluster mean age (1.35(-0.04)(+0.11) Gyr) and overshooting efficiency (Lambda(c) = 0.47(-0.04)(+0.14)). Therefore, clusters like NGC 419 may constitute important marks in the age scale of intermediate-age populations. After eye inspection of other CMDs derived from HST/ACS data, we suggest that the same secondary clump may also be present in the Large Magellanic Cloud clusters NGC 1751, 1783, 1806, 1846, 1852 and 1917.
Resumo:
In vitro studies have provided conflicting evidence of temperature changes in the tooth pulp chamber after low-level laser irradiation of the tooth surface. The present study was an in vitro evaluation of temperature increases in the human tooth pulp chamber after diode laser irradiation (GaAlAs, lambda = 808 nm) using different power densities. Twelve human teeth (three incisors, three canines, three premolars and three molars) were sectioned in the cervical third of the root and enlarged for the introduction of a thermocouple into the pulp chamber. The teeth were irradiated with 417 mW, 207 mW and 78 mW power outputs for 30 s on the vestibular surface approximately 2 mm from the cervical line of the crown. The highest average increase in temperature (5.6A degrees C) was observed in incisors irradiated with 417 mW. None of the teeth (incisors, canines, premolars or molars) irradiated with 207 mW showed temperature increases higher than 5.5A degrees C that could potentially be harmful to pulp tissue. Teeth irradiated with 78 mW showed lower temperature increases. The study showed that diode laser irradiation with a wavelength of 808 nm at 417 mW power output increased the pulp chamber temperature of certain groups of teeth, especially incisors and premolars, to critical threshold values for the dental pulp (5.5A degrees C). Thus, this study serves as a warning to clinicians that ""more"" is not necessarily ""better"".
Resumo:
Background: Eccentric exercises (EEs) are recommended for the treatment of Achilles tendinopathy, but the clinical effect from EE has a slow onset. Hypothesis: The addition of low-level laser therapy (LLLT) to EE may cause more rapid clinical improvement. Study Design: Randomized controlled trial; Level of evidence, 1. Methods: A total of 52 recreational athletes with chronic Achilles tendinopathy symptoms were randomized to groups receiving either EE + LLLT or EE + placebo LLLT over 8 weeks in a blinded manner. Low-level laser therapy (lambda = 820 nm) was administered in 12 sessions by irradiating 6 points along the Achilles tendon with a power density of 60 mW/cm(2) and a total dose of 5.4 J per session. Results: The results of the intention-to-treat analysis for the primary outcome, pain intensity during physical activity on the 100-mm visual analog scale, were significantly lower in the LLLT group than in the placebo LLLT group, with 53.6 mm versus 71.5 mm (P = .0003) at 4 weeks, 37.3 mm versus 62.8 mm (P = .0002) at 8 weeks, and 33.0 mm versus 53.0 mm (P =.007) at 12 weeks after randomization. Secondary outcomes of morning stiffness, active dorsiflexion, palpation tenderness, and crepitation showed the same pattern in favor of the LLLT group. Conclusion: Low-level laser therapy, with the parameters used in this study, accelerates clinical recovery from chronic Achilles tendinopathy when added to an EE regimen. For the LLLT group, the results at 4 weeks were similar to the placebo LLLT group results after 12 weeks.
Resumo:
In this paper, we consider some non-homogeneous Poisson models to estimate the probability that an air quality standard is exceeded a given number of times in a time interval of interest. We assume that the number of exceedances occurs according to a non-homogeneous Poisson process (NHPP). This Poisson process has rate function lambda(t), t >= 0, which depends on some parameters that must be estimated. We take into account two cases of rate functions: the Weibull and the Goel-Okumoto. We consider models with and without change-points. When the presence of change-points is assumed, we may have the presence of either one, two or three change-points, depending of the data set. The parameters of the rate functions are estimated using a Gibbs sampling algorithm. Results are applied to ozone data provided by the Mexico City monitoring network. In a first instance, we assume that there are no change-points present. Depending on the adjustment of the model, we assume the presence of either one, two or three change-points. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
In this paper, we consider the problem of estimating the number of times an air quality standard is exceeded in a given period of time. A non-homogeneous Poisson model is proposed to analyse this issue. The rate at which the Poisson events occur is given by a rate function lambda(t), t >= 0. This rate function also depends on some parameters that need to be estimated. Two forms of lambda(t), t >= 0 are considered. One of them is of the Weibull form and the other is of the exponentiated-Weibull form. The parameters estimation is made using a Bayesian formulation based on the Gibbs sampling algorithm. The assignation of the prior distributions for the parameters is made in two stages. In the first stage, non-informative prior distributions are considered. Using the information provided by the first stage, more informative prior distributions are used in the second one. The theoretical development is applied to data provided by the monitoring network of Mexico City. The rate function that best fit the data varies according to the region of the city and/or threshold that is considered. In some cases the best fit is the Weibull form and in other cases the best option is the exponentiated-Weibull. Copyright (C) 2007 John Wiley & Sons, Ltd.