977 resultados para Asymptotic Formulas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have developed a technique that circumvents the process of elimination of secular terms and reproduces the uniformly valid approximations, amplitude equations, and first integrals. The technique is based on a rearrangement of secular terms and their grouping into the secular series that multiplies the constants of the asymptotic expansion. We illustrate the technique by deriving amplitude equations for standard nonlinear oscillator and boundary-layer problems. © 2008 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the method of renormalization group (RG) [Phys. Rev. E 54, 376 (1996)] is related to the well-known approximations of Rytov and Born used in wave propagation in deterministic and random media. Certain problems in linear and nonlinear media are examined from the viewpoint of RG and compared with the literature on Born and Rytov approximations. It is found that the Rytov approximation forms a special case of the asymptotic expansion generated by the RG, and as such it gives a superior approximation to the exact solution compared with its Born counterpart. Analogous conclusions are reached for nonlinear equations with an intensity-dependent index of refraction where the RG recovers the exact solution. © 2008 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a simulation-based density estimation technique for time series that exploits information found in covariate data. The method can be paired with a large range of parametric models used in time series estimation. We derive asymptotic properties of the estimator and illustrate attractive finite sample properties for a range of well-known econometric and financial applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid recursive estimation of hidden Markov Model (HMM) parameters is important in applications that place an emphasis on the early availability of reasonable estimates (e.g. for change detection) rather than the provision of longer-term asymptotic properties (such as convergence, convergence rate, and consistency). In the context of vision- based aircraft (image-plane) heading estimation, this paper suggests and evaluates the short-data estimation properties of 3 recursive HMM parameter estimation techniques (a recursive maximum likelihood estimator, an online EM HMM estimator, and a relative entropy based estimator). On both simulated and real data, our studies illustrate the feasibility of rapid recursive heading estimation, but also demonstrate the need for careful step-size design of HMM recursive estimation techniques when these techniques are intended for use in applications where short-data behaviour is paramount.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this selection of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tension. We treat the numerical problem of computing these Saffman-Taylor fingers with kinetic undercooling, which turns out to be more subtle than the analogue with surface tension, since kinetic undercooling permits finger shapes which are corner-free but not analytic. We provide numerical evidence for the selection mechanism by setting up a problem with both kinetic undercooling and surface tension, and numerically taking the limit that the surface tension vanishes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper introduces the smooth transition logit (STL) model that is designed to detect and model situations in which there is structural change in the behaviour underlying the latent index from which the binary dependent variable is constructed. The maximum likelihood estimators of the parameters of the model are derived along with their asymptotic properties, together with a Lagrange multiplier test of the null hypothesis of linearity in the underlying latent index. The development of the STL model is motivated by the desire to assess the impact of deregulation in the Queensland electricity market and ascertain whether increased competition has resulted in significant changes in the behaviour of the spot price of electricity, specifically with respect to the occurrence of periodic abnormally high prices. The model allows the timing of any change to be endogenously determined and also market participants' behaviour to change gradually over time. The main results provide clear evidence in support of a structural change in the nature of price events, and the endogenously determined timing of the change is consistent with the process of deregulation in Queensland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a combined experimental and numerical study on the behaviour of both circular and square concrete-filled steel tube (CFT) stub columns under local compression. Twelve circular and eight square CFT stub columns were tested to study their bearing capacity and the key influential parameters. A 3D finite element model was established for simulation and parametric study to investigate the structural behaviour of the stub columns. The numerical results agreed well with the experimental results. In addition, analytical formulas were proposed to calculate the load bearing capacity of CFT stub columns under local compression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Back in 1995, Peter Drahos wrote a futuristic article called ‘Information feudalism in the information society’. It took the form of an imagined history of the information society in the year 2015. Drahos provided a pessimistic vision of the future, in which the information age was ruled by the private owners of intellectual property. He ended with the bleak, Hobbesian image: "It is unimaginable that the information society of the 21st century could be like this. And yet if abstract objects fall out of the intellectual commons and are enclosed by private owners, private, arbitrary, unchecked global power will become a part of life in the information society. A world in which seed rights, algorithms, DNA, and chemical formulas are owned by a few, a world in which information flows can be coordinated by information-media barons, might indeed be information feudalism (p. 222)." This science fiction assumed that a small number of states would dominate the emerging international regulatory order set up under the World Trade Organization. In Information Feudalism: Who Owns the Knowledge Economy?, Peter Drahos and his collaborator John Braithwaite reprise and expand upon the themes first developed in that article. The authors contend: "Information feudalism is a regime of property rights that is not economicallyefficient, and does not get the balance right between rewarding innovation and diffusing it. Like feudalism, it rewards guilds instead of inventive individual citizens. It makes democratic citizens trespassers on knowledge that should be the common heritage of humankind, their educational birthright. Ironically, information feudalism, by dismantling the publicness of knowledge, will eventually rob the knowledge economy of much of its productivity (p. 219)." Drahos and Braithwaite emphasise that the title Information Feudalism is not intended to be taken at face value by literal-minded readers, and crudely equated with medieval feudalism. Rather, the title serves as a suggestive metaphor. It designates the transfer of knowledge from the intellectual commons to private corporation under the regime of intellectual property.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multinational financial institutions (MNFIs) play a significant role in financing the activities of their clients in developing nations. Consistent with the ‘follow-the-customer’ phenomenon which explains financial institution expansion, these entities are increasingly profiting from activities associated with this growing market. However, not only are MNFIs persistent users of tax havens, but also, more than other industries, have the opportunity to reduce tax through transfer pricing measures. This paper establishes a case for an industry-specific adoption of unitary taxation with formulary apportionment as a viable alternative to the current regime. In doing so, it considers the practicalities of implementing this by examining both definitional issues and possible formulas for MNFIs. This paper argues that, while there would be implementation difficulties to overcome, the current domestic models of formulary apportionment provide important guidance as to how the unitary business and business activities of MNFIs should be defined, as well as the factors that should be included in an allocation formula, and the appropriate weighting. This paper concludes that unitary taxation with formulary apportionment is a viable industry-specific alternative for MNFIs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The numerical solution of fractional partial differential equations poses significant computational challenges in regard to efficiency as a result of the spatial nonlocality of the fractional differential operators. The dense coefficient matrices that arise from spatial discretisation of these operators mean that even one-dimensional problems can be difficult to solve using standard methods on grids comprising thousands of nodes or more. In this work we address this issue of efficiency for one-dimensional, nonlinear space-fractional reaction–diffusion equations with fractional Laplacian operators. We apply variable-order, variable-stepsize backward differentiation formulas in a Jacobian-free Newton–Krylov framework to advance the solution in time. A key advantage of this approach is the elimination of any requirement to form the dense matrix representation of the fractional Laplacian operator. We show how a banded approximation to this matrix, which can be formed and factorised efficiently, can be used as part of an effective preconditioner that accelerates convergence of the Krylov subspace iterative solver. Our approach also captures the full contribution from the nonlinear reaction term in the preconditioner, which is crucial for problems that exhibit stiff reactions. Numerical examples are presented to illustrate the overall effectiveness of the solver.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper the issue of finding uncertainty intervals for queries in a Bayesian Network is reconsidered. The investigation focuses on Bayesian Nets with discrete nodes and finite populations. An earlier asymptotic approach is compared with a simulation-based approach, together with further alternatives, one based on a single sample of the Bayesian Net of a particular finite population size, and another which uses expected population sizes together with exact probabilities. We conclude that a query of a Bayesian Net should be expressed as a probability embedded in an uncertainty interval. Based on an investigation of two Bayesian Net structures, the preferred method is the simulation method. However, both the single sample method and the expected sample size methods may be useful and are simpler to compute. Any method at all is more useful than none, when assessing a Bayesian Net under development, or when drawing conclusions from an ‘expert’ system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate the phenomenon of self-organized criticality (SOC) in a simple random walk model described by a random walk of a myopic ant, i.e., a walker who can see only nearest neighbors. The ant acts on the underlying lattice aiming at uniform digging, i.e., reduction of the height profile of the surface but is unaffected by the underlying lattice. In one, two, and three dimensions we have explored this model and have obtained power laws in the time intervals between consecutive events of "digging." Being a simple random walk, the power laws in space translate to power laws in time. We also study the finite size scaling of asymptotic scale invariant process as well as dynamic scaling in this system. This model differs qualitatively from the cascade models of SOC.