996 resultados para Artificial feeding


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite extensive study, it still is not clear whether artificial reefs produce new fish biomass or whether they only attract various species and make them more vulnerable to fishing mortality. To further evaluate this question, the size and age of red snapper (Lutjanus campechanus) were sampled from April to November 2010 at artificial reefs south of Mobile Bay off the coast of Alabama and compared with the age of the artificial reef at the site of capture. Red snapper were collected with hook and line and a fish trap and visually counted during scuba-diver surveys. In the laboratory, all captured red snapper were weighed and measured, and the otoliths were removed for aging. The mean age of red snapper differed significantly across reefs of different ages, with older reefs having older fish. The mean age of red snapper at a particular reef was not related to reef depth or distance to other reefs. The positive correlation between the mean age of red snapper and the age of the reef where they were found supports the contention that artificial reefs in the northern Gulf of Mexico enhance production of red snapper. The presence of fish older than the reef indicates that red snapper are also attracted to artificial reefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study showed that large prefabricated units and concrete rubble patch reefs, placed as artificial marine habitats on sand bottom, greatly enhance the abundance, diversity, and biomass of fish in an area. Densities of individuals and biomass were found considerably higher at artificial reefs than at nearby, natural, bank reefs, a result consistent with other studies. Location, depth, and vertical profile are important factors determining fish assemblages at artificial habitats in the Keys. Fishes were both produced at artificial reefs and attracted from the surrounding area. Fish assemblages at the Hawk Channel artificial reefs were considerably different from those on the offshore reef tract, particularly in terms of dominant species. Rescue of the original 1992 work in 2005 was funded by the South Florida Ecosystem Restoration Prediction and Modeling Program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The food sources of the leptocephali of the teleostean superorder Elopomorpha have been controversial, yet observations on the leptocephali of the worm eels, Myrophis spp. (family Ophichthidae) collected in the northern Gulf of Mexico indicate active, not passive, feeding. Leptocephali had protists in their alimentary canals. Estimates of the physiological energetics of worm eels indicate that large aloricate protozoa including ciliates could provide substantial energy to these leptocephali toward the end of the premetamorphic and metamorphic stages, given the low energy requirements of metamorphosing leptocephali. Global ocean warming will likely force a shift in oceanic food webs; a shift away from large protozoa toward smaller protists is possible. Such a disruption of the oceanic food webs could further compromise the survival of leptocephali.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined the diets and habitat shift of juvenile red snapper (Lutjanus campechanus) in the northeast Gulf of Mexico. Fish were collected from open sand-mud habitat (little to no relief), and artificial reef habitat (1-m3 concrete or PVC blocks), from June 1993 through December 1994. In 1994, fish settled over open habitat from June to September, as shown by trawl collections, then began shifting to reef habitat — a shift that was almost completed by December as observed by SCUBA visual surveys. Stomachs were examined from 1639 red snapper that ranged in size from 18.0 to 280.0 mm SL. Of these, 850 fish had empty stomachs, and 346 fish from open habitat and 443 fish from reef habitat contained prey. Prey were identified to the lowest possible taxon and quantified by volumetric measurement. Specific volume of particular prey taxa were calculated by dividing prey volume by individual fish weight. Red snapper shifted diets with increasing size. Small red snapper (<60 mm SL) fed mostly on chaetognaths, copepods, shrimp, and squid. Large red snapper (60–280 mm SL) shifted feeding to fish prey, greater amounts of squid and crabs, and continued feeding on shrimp. We compared red snapper diets for overlapping size classes (70–160 mm SL) of fish that were collected from both habitats (Bray-Curtis dissimilarity index and multidimensional scaling analysis). Red snapper diets separated by habitat type rather than fish size for the size ranges that overlapped habitats. These diet shifts were attributed to feeding more on reef prey than on open-water prey. Thus, the shift in habitat shown by juvenile red snapper was reflected in their diet and suggested differential habitat values based not just on predation refuge but food resources as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the migration and behavior of young Pacific Bluefin tuna (Thunnus orientalis) using archival tags. The archival tag measures environmental variables, records them in its memory, and estimates daily geographical locations based on measured light levels. Of 166 archival tags implanted in Pacific bluefin tuna that were released at the northeastern end of the East China Sea from 1995 to 1997, 30 tags were recovered, including one from a fish that migrated across the Pacific. This article describes swimming depth, ambient water temperature, and feeding frequency of young Pacific bluefin tuna based on retrieved data. Tag performance, effect of the tag on the fish, and horizontal movements of the species are described in another paper. Young Pacific bluefin tuna swim mainly in the mixed layer, usually near the sea surface, and swim in deeper water in daytime than at nighttime. They also exhibit a pattern of depth changes, corresponding to sunrise and sunset, apparently to avoid a specific low light level. The archival tags recorded temperature changes in viscera that appear to be caused by feeding, and those changes indicate that young Pacific bluefin tuna commonly feed at dawn and in the daytime, but rarely at dusk or at night. Water temperature restricts their distribution, as indicated by changes in their vertical distribution with the seasonal change in depth of the thermocline and by the fact that their horizontal distribution is in most cases confined to water in the temperature range of 14−20°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stomachs of 819 Atlantic bluefin tuna (Thunnus thynnus) sampled from 1988 to 1992 were analyzed to compare dietary differences among five feeding grounds on the New England continental shelf (Jeffreys Ledge, Stellwagen Bank, Cape Cod Bay, Great South Channel, and South of Martha’s Vineyard) where a majority of the U.S. Atlantic commercial catch occurs. Spatial variation in prey was expected to be a primary influence on bluefin tuna distribution during seasonal feeding migrations. Sand lance (Ammodytes spp.), Atlantic herring (Clupea harengus), Atlantic mackerel (Scomber scombrus), squid (Cephalopoda), and bluefish (Pomatomus saltatrix) were the top prey in terms of frequency of occurrence and percent prey weight for all areas combined. Prey composition was uncorrelated between study areas, with the exception of a significant association between Stellwagen Bank and Great South Channel, where sand lance and Atlantic herring occurred most frequently. Mean stomach-contents biomass varied significantly for all study areas, except for Great South Channel and Cape Cod Bay. Jeffreys Ledge had the highest mean stomach-contents biomass (2.0 kg) among the four Gulf of Maine areas and Cape Cod Bay had the lowest (0.4 kg). Diet at four of the five areas was dominated by one or two small pelagic prey and several other pelagic prey made minor contributions. In contrast, half of the prey species found in the Cape Cod Bay diet were demersal species, including the frequent occurrence of the sessile fig sponge (Suberites ficus). Prey size selection was consistent over a wide range of bluefin length. Age 2–4 sand lance and Atlantic herring and age 0–1 squid and Atlantic mackerel were common prey for all sizes of bluefin tuna. This is the first study to compare diet composition of western Atlantic bluefin tuna among discrete feeding grounds during their seasonal migration to the New England continental shelf and to evaluate predator-prey size relationships. Previous studies have not found a common occurrence of demersal species or a pre-dominance of Atlantic herring in the diet of bluefin tuna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been much recent interest in the effects of fishing on habitat and non-target species, as well as in protecting certain areas of the seabed from these effects (e.g. Jennings and Kaiser, 1998; Benaka, 1999; Langton and Auster, 1999; Kaiser and de Groot, 2000). As part of an effort to determine the effectiveness of marine closed areas in promoting recovery of commercial species (e.g. haddock, Melanogrammus aegelfinus; sea scallops, Placopecten magellanicus; yellowtail flounder, Limanda ferruginea; cod, Gadus morhua), nontarget species, and habitat, a multidisciplinary research cruise was conducted by the Northeast Fisheries Science Center (NEFSC), National Marine Fisheries Service. The cruise was conducted in closed area II (CA-II) of the eastern portion of Georges Bank during 19–29 June 2000 (Fig. 1). The area has historically produced high landings of scallops but was closed in 1994 principally for groundfish recovery (Fogarty and Murawski, 1998). The southern portion of the area was reopened to scallop fishing from 15 June to 12 November 1999, and again from 15 June to 15 August 2000. While conducting our planned sampling, we observed scallop viscera (the noncalcareous remains from scallops that have been shucked by commercial fishermen at sea) in the stomachs of several fish species at some of these locations, namely little skate (Raja erinacea), winter skate (R. ocellata), red hake (Urophycis chuss), and longhorn sculpin (Myoxocephalus octodecemspinosus). We examined the stomach contents of a known scavenger, the longhorn sculpin, to evaluate and document the extent of this phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orbinia johnsoni were studied from a small sandy beach near Mussel Pt., Pacific Grove, California, where they are most abundant at low tide levels in fine sand. They were found to have a mean length of 190 mm. The orbiniids were found with their guts the fullest during incoming to high tides. It is plausible that this is when they are feeding. It takes about 3 to 3.5 hours for food to travel through the length fo the gut. The orbiniids eat 93 percent sand and seven percent organic detritus. Special note should be taken that some food selectivity appears to be involved and that high percentages of organic matter in the feces are found in worms collected during low, outgoing tides. Evidence suggests that the worms are bottom feeders, not coming to the surface to feed.