960 resultados para Apparent kinetic constants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reports that heat processing of foods induces the formation of acrylamide heightened interest in the chemistry, biochemistry, and safety of this compound. Acrylamide-induced neurotoxicity, reproductive toxicity, genotoxicity, and carcinogenicity are potential human health risks based on animal studies. Because exposure of humans to acrylamide can come from both external sources and the diet, there exists a need to develop a better understanding of its formation and distribution in food and its role in human health. To contribute to this effort, experts from eight countries have presented data on the chemistry, analysis, metabolism, pharmacology, and toxicology of acrylamide. Specifically covered are the following aspects: exposure from the environment and the diet; biomarkers of exposure; risk assessment; epidemiology; mechanism of formation in food; biological alkylation of amino acids, peptides, proteins, and DNA by acrylamide and its epoxide metabolite glycidamide; neurotoxicity, reproductive toxicity, and carcinogenicity; protection against adverse effects; and possible approaches to reducing levels in food. Cross-fertilization of ideas among several disciplines in which an interest in acrylamide has developed, including food science, pharmacology, toxicology, and medicine, will provide a better understanding of the chemistry and biology of acrylamide in food, and can lead to the development of food processes to decrease the acrylamide content of the diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new primary model based on a thermodynamically consistent first-order kinetic approach was constructed to describe non-log-linear inactivation kinetics of pressure-treated bacteria. The model assumes a first-order process in which the specific inactivation rate changes inversely with the square root of time. The model gave reasonable fits to experimental data over six to seven orders of magnitude. It was also tested on 138 published data sets and provided good fits in about 70% of cases in which the shape of the curve followed the typical convex upward form. In the remainder of published examples, curves contained additional shoulder regions or extended tail regions. Curves with shoulders could be accommodated by including an additional time delay parameter and curves with tails shoulders could be accommodated by omitting points in the tail beyond the point at which survival levels remained more or less constant. The model parameters varied regularly with pressure, which may reflect a genuine mechanistic basis for the model. This property also allowed the calculation of (a) parameters analogous to the decimal reduction time D and z, the temperature increase needed to change the D value by a factor of 10, in thermal processing, and hence the processing conditions needed to attain a desired level of inactivation; and (b) the apparent thermodynamic volumes of activation associated with the lethal events. The hypothesis that inactivation rates changed as a function of the square root of time would be consistent with a diffusion-limited process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurements of apparent specific volume (ASV) for a series of alternative sweeteners (cyclamates, sulfamates, saccharins, acesulfames and anilinomethanesulfonates) have been made. Taste data have been obtained for many of the new compounds unless the toxicity of the associated metals precluded this. Apparent molar volume (AMV), isentropic specific (IASC) and isentropic molar (IAMC) compressibilities were also measured. Sixteen metallic cyclamates cyc-C6H11NHSO3M and two phenylsulfamates ArNHSO3Na, namely 3.5-dimethyl- and 3,4-dimethoxyphenylsulfamates have been examined. When the ASVs for these are combined with those for 15 aliphatic, aromatic and alicyclic sulfamates from a previous study, many of the values are seen to fall into the region that was previously identified as being the "sweet area", i.e. the ASVs lay between similar to0.5 and similar to0.7 (a few sweet compounds fall below this range and it is suggested that it could be extended slightly to accommodate these). Interestingly, the anilinomethanesulfonates, ArNHCH2SO3Na (Ar = C6H5-, 3-MeC6H4- and 3-ClC6H4-) lie clearly in the sweet region but only one of them shows slight sweetness showing that the molecular structural change made (compared with the 'parent' sulfamate-NHSO3-) cannot be accommodated at the receptor site. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative control of aroma generation during the Maillard reaction presents great scientific and industrial interest. Although there have been many studies conducted in simplified model systems, the results are difficult to apply to complex food systems, where the presence of other components can have a significant impact. In this work, an aqueous extract of defatted beef liver was chosen as a simplified food matrix for studying the kinetics of the Mallard reaction. Aliquots of the extract were heated under different time and temperature conditions and analyzed for sugars, amino acids, and methylbutanals, which are important Maillard-derived aroma compounds formed in cooked meat. Multiresponse kinetic modeling, based on a simplified mechanistic pathway, gave a good fit with the experimental data, but only when additional steps were introduced to take into account the interactions of glucose and glucose-derived intermediates with protein and other amino compounds. This emphasizes the significant role of the food matrix in controlling the Maillard reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined effect of pressure and temperature on the rate of gelatinisation of starch present in Thai glutinous rice was investigated. Pressure was found to initiate gelatinisation when its value exceeded 200 MPa at ambient temperature. On the other hand, complete gelatinisation was observed at 500 and 600 MPa at 70 degrees C, when the rice was soaked in water under these conditions for 120 min. A first-order kinetic model describing the rate of gelatinisation was developed to estimate the values of the rate constants as a function of pressure and temperature in the range: 0.1-600 MPa and 20-70 degrees C. The model, based on the well-known Arrhenius and Eyring equations, assumed the form [GRAPHICS] The constants k(0), E-a, and Delta V were found to take values: 31.19 s(-1), 37.89 kJ mol(-1) and -9.98 cm(3) mol(-1), respectively. It was further noted that the extent of gelatinisation occurring at any time, temperature and pressure, could be exclusively correlated with the grain moisture content. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method of estimating dissipation rates from a vertically pointing Doppler lidar with high temporal and spatial resolution has been evaluated by comparison with independent measurements derived from a balloon-borne sonic anemometer. This method utilizes the variance of the mean Doppler velocity from a number of sequential samples and requires an estimate of the horizontal wind speed. The noise contribution to the variance can be estimated from the observed signal-to-noise ratio and removed where appropriate. The relative size of the noise variance to the observed variance provides a measure of the confidence in the retrieval. Comparison with in situ dissipation rates derived from the balloon-borne sonic anemometer reveal that this particular Doppler lidar is capable of retrieving dissipation rates over a range of at least three orders of magnitude. This method is most suitable for retrieval of dissipation rates within the convective well-mixed boundary layer where the scales of motion that the Doppler lidar probes remain well within the inertial subrange. Caution must be applied when estimating dissipation rates in more quiescent conditions. For the particular Doppler lidar described here, the selection of suitably short integration times will permit this method to be applicable in such situations but at the expense of accuracy in the Doppler velocity estimates. The two case studies presented here suggest that, with profiles every 4 s, reliable estimates of ϵ can be derived to within at least an order of magnitude throughout almost all of the lowest 2 km and, in the convective boundary layer, to within 50%. Increasing the integration time for individual profiles to 30 s can improve the accuracy substantially but potentially confines retrievals to within the convective boundary layer. Therefore, optimization of certain instrument parameters may be required for specific implementations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel macrocyclic receptors which bind electron-donor aromatic substrates via π-stacking donor- acceptor interactions are obtained by cyclo-imidization of an amine-functionalized arylether-sulfone with pyromellitic- and 1,4,5,8-naphthalene-tetracarboxylic dianhydrides. These macrocycles complex with a wide variety of π-donor substrates including tetrathiafulvalene, naphthalene, anthracene, pyrene, perylene, and functional derivatives of these polycyclic hydrocarbons. The resulting supramolecular assemblies range from simple 1:1 complexes, to [2]- and [3]-pseudorotaxanes, and even (as a result of crystallographic disorder) an apparent polyrotaxane. Direct, five-component self-assembly of a metal-centred [3]pseudorotaxane is also observed, on complexation of a macrocyclic ether-imide with 8-hydroxyquinoline in the presence of palladium(II) ions. Binding studies in solution were carried out by 1H NMR and UV-visible spectroscopy, and the stoichiometries of binding were confirmed by Job plots based on charge-transfer absorption bands. The highest association constants are found for strong π-donor guests with large surface-areas, notably perylene and 1-hydroxypyrene, for which Ka values of 1.4 x 103 and 2.3 x 103 M-1 respectively are found. Single crystal X-ray analyses of the receptors and their derived complexes reveal large, induced-fit distortions of the macrocyclic frameworks as a result of complexation. These structures provide compelling evidence for the existence of strong, attractive forces between the electronically-complementary aromatic π-systems of host and guest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports effects of chestnut and mimosa tannins on N utilisation in sheep. Tannins were added to grass either at ensilage or incorporated into grass silage at feeding. The study used an 8 × 5 incomplete Latin Square design with eight mature wether sheep and five 21-day periods. Tannin additions reduced in vivo apparent digestibilities of dry matter (DM), organic matter (OM) and neutral detergent fibre (aNDFom) compared with the untreated control silage (P<0.001). Reductions ranged from 7.6% for DM to 8.5% for aNDFom. Chestnut compared to mimosa tannin silages produced higher values for DM intake (734 g/day versus 625 g/day) and in vivo digestibility for DM, OM and aNDFom (0.66, 0.68 and 0.69 versus 0.61, 0.63 and 0.62; P<0.001). A substantial shift occurred in the pattern of N excretion in sheep fed the tannin versus control silages. As a proportion of daily N intake, urinary N losses were lower (56.4 g/100 g N versus 65.1 g/100 g N intake) and faecal N losses were higher (40.2 g/100 g N versus 29.8 g/100 g N intake) for sheep fed the tannin silages compared with those fed the control grass silage (P<0.001). Nitrogen intake was higher in sheep fed the chestnut compared to mimosa tannin silages (16.2 g/day versus 13.4 g/day; P<0.001), reflecting the lower DM intake of sheep fed the mimosa silages. However, faecal N loss was lower for chestnut compared to mimosa tannin silage fed sheep (38.2 g/100 g N versus 42.1 g/100 g N intake; P<0.01), resulting in higher N retentions with the chestnut compared to the mimosa silage fed sheep (5.49 g/100 g N versus 1.38 g/100 g N intake). Faecal N losses were also higher when tannins were added during ensiling rather than at feeding (P<0.05). Although there was no overall effect of tannins on N retention in mature wether sheep, it is likely that productive ruminants with higher protein requirements would retain more N from silages containing chestnut tannins. Tannins added externally to grass silages may generate some benefits on N utilisation and environmental N excretions in sheep fed the silages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-resolved studies of germylene, GeH2, generated by laser. ash photolysis of 3,4-dimethyl-1-germacyclopent-3-ene, have been carried out to obtain rate coefficients for its bimolecular reaction with C2D2. The reaction was studied in the gas phase, mainly at a total pressure of 1.3 kPa (in SF6 bath gas) at five temperatures in the range 298-558 K. Pressure variation measurements over the range 0.13-13 kPa ( SF6) at 298, 397 and 558 K revealed a small pressure dependence but only at 558 K. After correction for this, the second-order rate coefficients gave the Arrhenius equation: log(k(infinity)/cm(3) molecule(-1) s(-1)) = (-10.96 +/- 0.05) + ( 6.16 +/- 0.37 kJ mol(-1))/RT ln 10 Comparison with the reaction of GeH2 + C2H2 (studied earlier) showed a similar behaviour with almost identical rate coefficients. The lack of a significant isotope effect is consistent with a rate-determining addition process and is explained by irreversible decomposition of the reaction intermediate to give Ge(P-3) + C2H4. This result contrasts with that for GeH2 + C2H4/C2D4 and those for the analogous silylene reactions. The underlying reasons for this are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmosphere–ocean general circulation models (AOGCMs) predict a weakening of the Atlantic meridional overturning circulation (AMOC) in response to anthropogenic forcing of climate, but there is a large model uncertainty in the magnitude of the predicted change. The weakening of the AMOC is generally understood to be the result of increased buoyancy input to the north Atlantic in a warmer climate, leading to reduced convection and deep water formation. Consistent with this idea, model analyses have shown empirical relationships between the AMOC and the meridional density gradient, but this link is not direct because the large-scale ocean circulation is essentially geostrophic, making currents and pressure gradients orthogonal. Analysis of the budget of kinetic energy (KE) instead of momentum has the advantage of excluding the dominant geostrophic balance. Diagnosis of the KE balance of the HadCM3 AOGCM and its low-resolution version FAMOUS shows that KE is supplied to the ocean by the wind and dissipated by viscous forces in the global mean of the steady-state control climate, and the circulation does work against the pressure-gradient force, mainly in the Southern Ocean. In the Atlantic Ocean, however, the pressure-gradient force does work on the circulation, especially in the high-latitude regions of deep water formation. During CO2-forced climate change, we demonstrate a very good temporal correlation between the AMOC strength and the rate of KE generation by the pressure-gradient force in 50–70°N of the Atlantic Ocean in each of nine contemporary AOGCMs, supporting a buoyancy-driven interpretation of AMOC changes. To account for this, we describe a conceptual model, which offers an explanation of why AOGCMs with stronger overturning in the control climate tend to have a larger weakening under CO2 increase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KM-GAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KM-GAP is based on the PRA model framework (Pöschl-Rudich-Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modelled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmo- spheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270 K is close to unity. Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for eðcient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.