992 resultados para Anti-reflection coating
Resumo:
Recentemente tem-se observado um crescente interesse pelo uso de plantas aromáticas, devido às inúmeras propriedades benéficas que lhes têm sido associadas, e a sua aplicação em diversas indústrias, como a indústria alimentar e farmacêutica. Este estudo incidiu sob três ervas aromáticas utilizadas comummente em Portugal: coentros, salsa e segurelha. O objetivo do mesmo foi contribuir para um melhor conhecimento das propriedades bioativas das plantas estudadas, através da determinação do seu teor em compostos fenólicos totais e em flavonoides, e avaliação das suas atividades antioxidante, antimicrobiana e anti-inflamatória. A atividade antioxidante foi determinada através de diferentes tipos de ensaios, nomeadamente avaliação da capacidade redutora, com os ensaios FRAP e CUPRAC, avaliação da capacidade de sequestro do radical DPPH• e avaliação da capacidade de sequestro do radical anião superóxido. A atividade antimicrobiana foi determinada utilizando três estirpes microbianas, Staphylococcus aureus, Escherichia coli e Candida albicans. Por sua vez, a ação anti-inflamatória foi determinada através de ensaios in-vivo apenas para a segurelha, utilizando dois modelos, um para a inflamação aguda (modelo de edema da pata induzido pela carragenina) e outro para a inflamação crónica (modelo da colite ulcerativa). Os resultados demonstraram que todos os extratos de plantas aromáticas possuem atividade antioxidante, sendo que o extrato de segurelha foi aquele que apresentou um maior teor de compostos fenólicos e flavonoides, bem como o que demonstrou possuir uma maior atividade antioxidante relativamente aos restantes extratos estudados, o que sugere o envolvimento destes compostos neste tipo de atividade antioxidante. Entre o extrato de coentros e salsa, o extracto de coentros apresentou um teor em compostos fenólicos e uma actividade antioxidante significativamente superior relativamente ao extracto de salsa. O extrato de segurelha foi o único que apresentou ação antimicrobiana, o que poderá indicar que os compostos fenólicos se encontram também interligados com esta propriedade. A atividade anti-inflamatória foi determinada apenas para o extrato de segurelha, sendo que se observou que este possui efeitos benéficos para a inflamação aguda e crónica, o que poderá estar novamente relacionado com o seu teor em fenóis e flavonoides. O efeito anti-inflamatório observado com o extrato de segurelha no modelo de colite pode ser muito útil do ponto de vista de profilaxia pois o extrato foi administrado aos animais logo a seguir à indução da colite e os resultados demonstram haver uma diminuição significativa da extensão e violência dos sinais da inflamação crónica observados no grupo controlo positivo.
Resumo:
ABSTRACTINTRODUCTION:Serological screening in blood banks does not include all transmittable diseases. American cutaneous leishmaniasis (ACL) has a high detection rate in the municipalities of the State of Paraná.METHODS:This study analyzed the presence of anti- Leishmania braziliensisantibodies in 176 blood donors who live in these endemic areas. The variables were analyzed with the χ2 test and Stata 9.1 software. RESULTS: Twenty (11.4%) samples were positive for the presence of anti- L. braziliensisantibodies. CONCLUSIONS: The high percentage of donors with anti- Leishmania spp. antibodies indicates the need to study the risk of ACL transmission through blood donors.
Resumo:
Abstract: INTRODUCTION: Despite multidrug therapy, leprosy remains a public health issue. The intradermal Bacillus Calmette-Guérin (BCG) vaccine, Mitsuda test (lepromin skin test), and anti-phenolic glycolipid I (PGL-I) serology are widely used in leprosy studies and have shown great epidemiological value. METHODS: This longitudinal study evaluated the relative risks and benefits of these three tools by comparing results observed in household contacts (HHCs) of leprosy patients who developed leprosy with those of HHCs who did not in a population of 2,992 individuals monitored during a 10-year period. RESULTS : Seventy-five (2.5%) new leprosy cases were diagnosed, including 28 (0.9%) co-prevalent cases. Therefore, for the risk-benefit assessment, 47 (1.6%) HHCs were considered as truly diagnosed during follow-up. The comparison between healthy and affected contacts demonstrated that not only did BCG vaccination increase protection, but boosters also increased to 95% relative risk (RR) reduction when results for having two or more scars were compared with having no scars [RR, 0.0459; 95% confidence interval (CI), 0.006-0.338]. Similarly, Mitsuda reactions >7mm in induration presented 7-fold greater protection against disease development compared to reactions of 0-3mm (RR, 0.1446; 95% CI, 0.0566-0.3696). In contrast, anti-PGL-I ELISA seropositivity indicated a 5-fold RR increase for disease outcome (RR, 5.688; 95% CI, 3.2412-9.9824). The combined effect of no BCG scars, Mitsuda reaction of <7mm, and seropositivity to anti-PGL-I increased the risk for leprosy onset 8-fold (RR, 8.109; 95% CI, 5.1167-12.8511). CONCLUSIONS: The adoption of these combined assays may impose measures for leprosy control strategies.
Resumo:
Fully comprehending brain function, as the scale of neural networks, will only be possi-ble with the development of tools by micro and nanofabrication. Regarding specifically silicon microelectrodes arrays, a significant improvement in long-term performance of these implants is essential. This project aims to create a silicon microelectrode coating that provides high-quality electrical recordings, while limiting the inflammatory response of chronic implants. To this purpose, a combined chitosan and gold nanoparticles coating was produced allied with electrodes modification by electrodeposition with PEDOT/PSS in order to reduce the im-pedance at 1kHz. Using a dip-coating mechanism, the silicon probe was coated and then charac-terized both morphologically and electrochemically, with focus on the stability of post-surgery performance in anesthetized rodents. Since not only the inflammatory response analysis is vital, the electrodes recording degradation over time was also studied. The produced film presented a thickness of approximately 50 μm that led to an increase of impedance of less than 20 kΩ in average. On a 3 week chronic implant, the impedance in-crease on the coated probe was of 641 kΩ, compared with 2.4 MΩ obtained for the uncoated probe. The inflammatory response was also significantly reduced due to the biocompatible film as proved by histological tests.
Resumo:
This work documents the deposition and optimization of semiconductor thin films using chemical spray coating technique (CSC) for application on thin-film transistors (TFTs), with a low-cost, simple method. CSC setup was implemented and explored for industrial application, within Holst Centre, an R&D center in the Netherlands. As zinc oxide had already been studied within the organization, it was used as a standard material in the initial experiments, obtaining typical mobility values of 0.14 cm2/(V.s) for unpatterned TFTs. Then, oxide X layer characteristics were compared for films deposited with CSC at 40°C and spin-coating. The mobility of the spin-coated TFTs was 103 cm2/(V.s) higher, presumably due to the lack of uniformity of spray-coated film at such low temperatures. Lastly, tin sulfide, a relatively unexplored material, was deposited by CSC in order to obtain functional TFTs and explore the device’s potential for working as a phototransistor. Despite the low mobilities of the devices, a sensitive photodetector was made, showing drain current variation of nearly one order of magnitude under yellow light. CSC technique’s simplicity and versatility was confirmed, as three different semiconductors were successfully implemented into functional devices.
Resumo:
Cancer remains as one of the top killing diseases in first world countries. It’s not a single, but a set of various diseases for which different treatment approaches have been taken over the years. Cancer immunotherapy comes as a “new” breath on cancer treatment, taking use of the patients’ immune system to induce anti-cancer responses. Dendritic Cell (DC) vaccines use the extraordinary capacity of DCs’ antigen presentation so that specific T cell responses may be generated against cancer. In this work, we report the ex vivo generation of DCs from precursors isolated from clinical-grade cryopreserved umbilical cord blood (UCB) samples. After the thawing protocol for cryopreserved samples was optimized, the generation of DCs from CD14+ monocytes, i.e., moDCs, or CD34+ hematopoietic stem cells (HSCs), i.e, CD34-derived DCs, was followed and their phenotype and function evaluated. Functional testing included the ability to respond to maturation stimuli (including enzymatic removal of surface sialic acids), Ovalbumin-FITC endocytic capacity, cytokine secretion and T cell priming ability. In order to evaluate the feasibility of using DCs derived from UCB precursors to induce immune responses, they were compared to peripheral blood (PB) moDCs. We observed an increased endocytosis capacity after moDCs were differentiated from monocyte precursors, but almost 10-fold lower than that of PB moDCs. Maturation markers were absent, low levels of inflammatory cytokines were seen and T cell stimulatory capacity was reduced. Sialidase enzymatic treatment was able to mature these cells, diminishing endocytosis and promoting higher T cell stimulation. CD34-derived DCs showed higher capacity for both maturation and endocytic capacity than moDCs. Although much more information was acquired from moDCs than from CD34-derived DCs, we conclude the last as probably the best suited for generating an immune response against cancer, but of course much more research has to be performed.
Resumo:
Based on samples cross-sections from the Main Altarpiece of the Coimbra Old Cathedral, where a blue coating performed in 1685 is observed (that was partly covered with a Prussian blue-containing overpaint), the raw materials present in this coating were reproduced and studied. Blue areas were painted with smalt in oil, according to the contract signed by Manoel da Costa Pereira in 1684 and the analysis by Le Gac in 2009. Based on these, three batches of cobalt-based glasses (S1, S2 and S3) were heated and melted in alumina crucibles in the kiln. S1 contained 6.03 % of cobalt oxide, S2 contained 2.10 %, with the addition of 1.49 % of magnesium oxide, and S3 contained 6.82 % of cobalt oxide, with the addition of 4.63% of antimony trioxide. These batches were ground mechanically with water and manually with different vehicles stated in recipes. The results were studied by means of OM, SEM-EDS, X-Ray CT, Colorimetry and Vickers HT. Different binders were also produced and analyzed by means of μ-FTIR, in order to perform their characterization and obtain Standard Spectra. Since anhydrite was identified in the ground layers, gypsum from Óbidos was also characterized by XRD. The main goal of this thesis was to study all the raw materials present in the 1685-blue coating, in order to allow the historically accurate reconstruction of the layers build-up in the next future.
Resumo:
Anti-U is a rare red blood cell alloantibody that has been found exclusively in blacks. It can cause hemolytic disease of the newborn and hemolytic transfusion reactions. We describe the case of a female newborn presenting a strongly positive direct antiglobulin test due to an IgG antibody in cord blood. Anti-U was recovered from cord blood using acid eluate technique. Her mother presented positive screening of antibodies with anti-U identified at delivery. It was of IgG1 and IgG3 subclasses and showed a titer of 32. Monocyte monolayer assay showed moderate interaction of Fc receptors with maternal serum with a positive result (3.1%). The newborn was treated only with 48 hours of phototherapy for mild hemolytic disease. She recovered well and was discharged on the 4th day of life. We conclude that whenever an antibody against a high frequency erythrocyte antigen is identified in brown and black pregnant women, anti-U must be investigated.
Resumo:
Premature degradation of ordinary Portland cement (OPC) concrete infrastructures is a current and serious problem with overwhelming costs amounting to several trillion dollars. The use of concrete surface treatments with waterproofing materials to prevent the access of aggressive substances is an important way of enhancing concrete durability. The most common surface treatments use polymeric resins based on epoxy, silicone (siloxane), acrylics, polyurethanes or polymethacrylate. However, epoxy resins have low resistance to ultraviolet radiation while polyurethanes are sensitive to high alkalinity environments. Geopolymers constitute a group of materials with high resistance to chemical attack that could also be used for coating of concrete infrastructures exposed to harsh chemical environments. This article presents results of an experimental investigation on the resistance to chemical attack (by sulfuric and nitric acid) of several materials: OPC concrete, high performance concrete (HPC), epoxy resin, acrylic painting and a fly ash based geopolymeric mortar. Three types of acids, each with high concentrations of 10%, 20% and 30%, were used to simulate long term degradation by chemical attack. The results show that the epoxy resin had the best resistance to chemical attack, irrespective of the acid type and acid concentration.
Resumo:
Avaliou-se o impacto da utilização do açaí e camu-camu em pré-escolares de uma Unidade Filantrópica de Manaus-AM. Foram selecionadas 85 crianças voluntárias, de dois a seis anos incompletos, de ambos os sexos, distribuídas aleatoriamente em 5 grupos, tendo como fonte de ferro e vitamina C: açaí e açaí + camu-camu, perfazendo um total de 2 mg de ferro e 40 mg de ácido ascórbico, assim como o ferro aminoácido quelato na concentração de 1 e 2 mg de ferro. O ferro foi distribuído diariamente na colação por um período de 120 dias. Na caracterização da anemia considerou-se o ponto de corte de hemoglobina <11g/dL. Os resultados demonstraram que de um universo de 85 crianças 6 (7%) apresentaram um quadro de desnutrição crônica, sendo ao final da intervenção reduzido para 4 (4,7%). O maior impacto da utilização do açaí foi como fonte energética, refletido no ganho de peso significativo das crianças (1,76 kg), mesmo quando adicionado de camu-camu (1,69 kg). Em relação a concentração de hemoglobina, não foi constatada diferença significativa entre as crianças dos diferentes grupos, independente da fonte de ferro: açaí (0,71 g/dL); açaí + camu-camu (0,60 g/dL), Ferro 2 mg (0,88 g/dL); água (0,85 g/ dL) e Ferro 1 mg (0,54 g/dL). Entretanto, a recuperação de crianças anêmicas foi maior no grupo que recebeu ferro aminoácido quelato na concentração de 2 mg de ferro. Conclui-se que o açaí tem um grande potencial como fonte energética e pouca expressividade como fonte de ferro, mesmo adicionado de camu-camu.
Resumo:
Glazing is a technique used to retard fish deterioration during storage. This work focuses on the study of distinct variables (fish temperature, coating temperature, dipping time) that affect the thickness of edible coatings (water glazing and 1.5% chitosan) applied on frozen fish. Samples of frozen Atlantic salmon (Salmo salar) at -15, -20, and -25 °C were either glazed with water at 0.5, 1.5 or 2.5 °C or coated with 1.5% chitosan solution at 2.5, 5 or 8 °C, by dipping during 10 to 60 s. For both water and chitosan coatings, lowering the salmon and coating solution temperatures resulted in an increase of coating thickness. At the same conditions, higher thickness values were obtained when using chitosan (max. thickness of 1.41±0.05 mm) compared to water (max. thickness of 0.84±0.03 mm). Freezing temperature and crystallization heat were found to be lower for 1.5% chitosan solution than for water, thus favoring phase change. Salmon temperature profiles allowed determining, for different dipping conditions, whether the salmon temperature was within food safety standards to prevent the growth of pathogenic microorganisms. The concept of safe dipping time is proposed to define how long a frozen product can be dipped into a solution without the temperature raising to a point where it can constitute a hazard.
Resumo:
PhD thesis in Biomedical Engineering
Resumo:
Ageing and skin exposure to UV radiation induces production and activation of matrix metalloproteinases (MMPs) and human neutrophil elastase (HNE). These enzymes are known to break down the extracellular matrix (ECM) which leads to wrinkle formation. Here, we demonstrated the potential of a solid-in-oil nanodispersion containing a competitive inhibitor peptide of HNE mixed with hyaluronic acid (HA), displaying 158 nm of mean diameter, to protect the skin against the ageing effects. Western blot analysis demonstrated that activation of MMP-1 in fibroblasts by HNE treatment is inhibited by the solid-in-oil nanodispersion containing the peptide and HA. The results clearly demonstrate that solid-in-oil nanodispersion containing the HNE inhibitor peptide is a promising strategy for anti-ageing effects. This effect can be seen particularly by ECM regulation by affecting fibroblasts. The formulation also enhances the formation of thicker bundles of actin filaments.
Resumo:
Poster